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S U M M A RY

Positron emission tomography (PET) is a medical imaging technique
with a wide range of applications across several medical fields. By
using radioactively labelled molecules (radiotracers), it is possible to
map out and quantify biological processes.

In drug development and discovery, PET can aid in understanding
the distribution and binding strength of a drug. By using a PET radio-
tracer that binds to the same target as the drug, and collecting data
both before and after the the drug is administered, it is possible to
quantify occupancy (i. e. the fraction of targets that were bound by
the drug).

The overarching goal of the PhD project was to improve the utility
of PET for quantification of drug interactions in the brain. Through-
out the project, common assumptions concerning both data analysis
and study design were assessed. Further, new analytical methods are
presented and evaluated.

In the first paper, the main question was whether the nondisplace-
able (i. e. not bound to the intended target) component could be a con-
founding factor when making between-group comparisons of total
binding. By estimating the non-displaceable uptake in four datasets
with the PET tracer [11C]PBR28, we found that both the alcohol use
disorder and Parkinson’s disease groups had significantly lower nondis-
placeable uptake than their respective controls. While this study does
not directly relate to estimation of occupancy, estimation of the nondis-
placeable binding is closely linked to estimation of occupancy. Between-
group differences in nondisplaceable binding will have confounding
effects on both VT and BPND, the two most frequently reported out-
come measures from dynamic PET.

For the two other papers, the main emphasis has been on the es-
timation of drug interaction parameters. The goal of paper II was to
provide data to guide the design of baseline-block PET studies. In
this type of study, the goal is to quantify the occupancy of a drug
by conducting two PET scans, one before, and one after administra-
tion of the drug. The observed difference in specific binding between
the two scans represents the target occupancy in the post-drug scan.
In a simulation framework based on the PET tracer [11C]Cimbi-36,
we evaluated the effect of the range of doses, number of included
subjects, and choice of analytical method, on the accuracy of IC50 es-
timated from VT . IC50 is the half-maximal inhibitory concentration, a
measure of the binding strength of the drug. We evaluated the perfor-
mance of two already established analytical methods: the Lassen plot
and LEO. In addition, we introduce LEA, a new method for calcula-
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tion of IC50 directly from PET outcome measures. LEA, like LEO, is
based on maximum likelihood estimation. Quantification of the dose-
occupancy relationship was substantially improved when using these
likelihood-based methods. The Lassen plot required approximately
four times the number of subjects to be as informative as LEO and
LEA. We also found that acquiring data points where subjects were
administered drug doses corresponding to less than approximately
40% occupancy contributed negligibly to IC50 estimation.

In the final paper, the focus was on calculation of occupancy from
PET scans with in-scan drug intervention. In this experimental setup,
the drug is administered during an ongoing scan, instead of the two-
scan baseline-block setup. Because the steady-state assumption that
forms the basis of most PET kinetic models is violated in a displace-
ment scan, new models must be developed to quantify the data. We
present a new model for input function-based quantification of dis-
placement scan data, and solve it using both a numeric approach
and simplified analytical approach. The performance of the model
is tested in [11C]UCB-J-based simulations, and in pig scans, where
[11C]UCB-J was displaced by brivaracetam. We demonstrated that the
one-scan setup is a viable alternative to baseline-block studies. In sim-
ulations, the model returned unbiased occupancy estimates with both
approaches, and the dose-occupancy relationship established from
the pig data was consistent both with results from the Lassen plot,
and with previously published results.
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D A N S K R E S U M É

Positron-emissionstomografi (PET) er en molekylær billeddannelses-
teknik, som ved brug af radioaktive sporstoffer muliggør billeddan-
nelse og kvantificering af molekylære og metaboliske processer i krop-
pen. Som billeddiagnostisk teknik anvendes PET især til diagnostik
af kræft. I centralnervesystemet kan PET blandt andet bruges til at
måle koncentrationen af tilgængelige receptorer. Dette har flere spæn-
dende anvendelsesmuligheder, både i klinikken, hvor det kan anven-
des diagnostisk og i forskning, hvor det kan bidrage til en større
forståelse af hjernens funktion hos raske og syge mennesker.

PET kan også bruges til at undersøge optagelsen og bindingen
af lægemidler i hjernen. For eksempel kan man ved hjælp af et ra-
dioaktivt sporstof, der binder til samme målprotein som lægemidlet
foretage PET-scanninger både før og efter administration, beregne
forholdet mellem indgivet dosis og optagelse i hjernen. Dette er bl.a.
meget anvendt ved udvikling og evaluering af nye lægemidler med
effekt i hjernen. I løbet af de sidste par årtier anvendes PET derfor i
stigende grad af lægemiddelindustrien, blandt andet for at bekræfte,
at potentielle nye lægemidler binder sig til det tilsigtede mål med
tilstrækkelig specificitet, og for at beregne hvilken dosis af lægemi-
dlet, der mest hensigtsmæssigt anvendes.

Dette PhD-projekt omhandler udvikling og evaluering af kvantita-
tive metoder til analyse af hjerne-PET-data. I den første artikel har vi
ved at bruge en ny analysemetode på flere eksisterende PET-datasæt
udfordret en af de grundlæggende antagelser i kvantitativ PET. I de
sidste to artikler fokuseres på såkaldte okkupansstudier, hvor PET
bruges til at beregne i hvor høj grad lægemidlet i hjernen. I disse
to artikler har vi brugt både simulerede og empiriske data til at un-
dersøge forskellige studiedesigns, samt evaluere eksisterende og nye
analysemetoder.

I artikel I anvendes en ny analysemetode, der gør det muligt at
udskille den del af det samlede PET-signal, der kommer fra speci-
fik binding af radioliganden til målproteinet. Den resterende del af
signalet kan komme fra enten ubundet radioligand eller eller ikke-
specifikt radioligand bundet i blod eller væv; sidstnævnte benævnes
sommetider som ’ikke-fortrængelig’ binding. I PET-studier, der sam-
menligner resultater mellem grupper (f.eks. patienter og kontroller),
er det almindeligt at antage, at den ikke-fortrængelige del af signaet
er konstant, og at eventuelle forskelle skyldes forskelle i den speci-
fikke binding. Men vi viser her for sporstoffet [11C]PBR28 – som
bruges som en markør for neurobetændelse – at både grupperne med
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alkoholafhængighed og Parkinsons sygdom havde signifikant lavere
ikke-fortrængeligt signal end raske kontroller.

I artikel II anvendes simulerede data til at evaluere aspekter af stud-
iedesign samt flere forskellige metoder til at analysere data fra det
traditionelle PET-okkupans design, hvor der PET-skannes ved base-
line og igen efter indgift af lægemidlet. Ved at simulere det samme
undersøgelsesdesign 1000 gange kan vi påvise, hvordan selv små æn-
dringer i eksempelvis antal af forsøgspersoner påvirker nøjagtighe-
den og præcisionen af de estimerede parametre. Disse resultater kan
bidrage til planlægningen af fremtidige studier. Artikel II lancerer
også en helt ny analysemetode, baseret på maximum likelihood-meto-
der. Maximum likelihood er en statistisk metode, hvor parametre es-
timeres ved at vælge den værdi, der bedst forklarer de observerede
værdier. Brug af maximum likelihood-baserede metoder førte til bedre
parameterestimater, men dette til trods gav den nye metode ikke
bedre resultater end en eksisterende likelihood-baseret metode.

I artikel III anvender vi en alternativ metode til PET-okkupans-
måling; her gives lægemidlet under en igangværende PET-scanning.
På den måde kan man få et estimat for okkupans ud fra en enkelt
PET-undersøgelse i stedet for to. Denne type eksperiment overtræder
imidlertid nogle fundamentale antagelser i traditionelle kvantitative
metoder til PET og derfor har vi udviklet en helt ny model til at
håndtere dette samt to forskellige måder at løse det på. Modellen
og løsningerne testes på både simulerede data og eksperimentelle
målinger fra grise og viste sig at give gode mål for okkupansen.
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Part I

I N T R O D U C T I O N

A rock pile ceases to be a rock pile the moment a single
man contemplates it, bearing within him the image of a

cathedral.

— Antoine de Saint-Exupéry,
The Little Prince





1
I N T R O D U C T I O N

Development of novel drugs is tremendously costly and time con-
suming. Over the last decades, positron emission tomography (PET)
has increasingly been used as a tool in the drug development pro-
cess, especially for drugs targeting the central nervous system (CNS).
By employing molecular imaging early in the drug development pro-
cess, it is possible to confirm if the drug crosses the blood-brain bar-
rier (BBB), and binds to its intended target with adequate in vivo
affinity. Thus, drug candidates with low probability of success can be
excluded before exhaustive and expensive clinical trials are initiated.

The focus of the work included in this thesis is model evaluation
and development for PET. Specifically, the emphasis is on data analy-
sis for PET studies including a drug intervention. When PET data is
collected both before and after the administration of a drug, it is pos-
sible to estimate the percentage of targets that the drug binds to (i.e.,
the occupancy). Further, by pooling occupancy data from several sub-
jects, it is possible to establish a dose-occupancy relationship, which
allows the occupancy to be predicted from the drug exposure.

Depending on the drug target and PET radiotracer, different meth-
ods are available for quantifying binding of the tracer, and occupancy
of the target by the drug. Further, the choice of analytical methods
also depends on the experimental setup. In addition to the traditional
baseline-block setup, where two separate PET scans are conducted, it
is in some cases possible to displace the PET signal by administering
a drug during an ongoing scan. The latter setup requires a different
class of models than those that have traditionally been used to ana-
lyze PET data. The thesis work includes evaluation of both existing
and novel models that can be applied both to the traditional baseline-
block study design, and in-scan intervention studies.

Ultimately, the goal of the presented work is to provide informa-
tion that can be used to improve the design of drug occupancy stud-
ies. We hypothesized that, by making informed decisions regarding
experimental setup and analysis methods, it is possible to minimize
both costs and radiation doses, without sacrificing the accuracy and
precision of parameter estimates.
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Part II

B A C K G R O U N D

Well, I must endure the presence of a few caterpillars if I
wish to become acquainted with the butterflies.

— Antoine de Saint-Exupéry,
The Little Prince





2
C E N T R A L N E RV O U S S Y S T E M P H A R M A C O L O G Y

It has been estimated that, in Europe, brain diseases cause 50% of
years lived with disability, and lead to costs of approximately €800
billion annually (Olesen et al., 2012; Olesen and Leonardi, 2003). In
the US, drugs targeting the central nervous system (CNS) represent
the most common type of prescription drugs among people under
the age of 60 years, with CNS stimulants being the most commonly
prescribed drug type in the 12 – 19 years age range, and antidepres-
sants being the most commonly prescribed drug type in the 20 – 59
years age range (Martin and Ogden, 2019). In addition to their clini-
cal importance, drugs targeting the CNS are also those that are most
frequently self-administered for recreational use. (Ritter et al., 2020a)

With only a few exceptions, most drug targets are proteins. Pro-
teins that are typically targeted by drugs include receptors, enzymes,
transporters and ion channels. This is true both for drugs acting on
the CNS and in the periphery. However, drug action in the CNS is
often more complicated than outside. Not only is the CNS a very
complex system, it is also uniquely protected by the blood-brain bar-
rier (BBB). Even more than in other systems, there is often a lack of
understanding of the events connecting drug action on a cellular level
to their effects on brain function (Ritter et al., 2020a).

In this brief chapter, some key concepts in CNS pharmacology are
described. The intention is not to give a complete overview, but to
give some background that is relevant to the thesis work.

2.1 drug-receptor interactions

The receptor concept has been called pharmacology’s "big idea" (Rang,
2006). Neuroreceptors represent one of the most common types of
targets for CNS drugs. Receptors are protein molecules found on cell
membranes. When bound by a small molecule (ligand) with a specific
chemical structure, they can cause a cellular response. When a ligand
is bound to a receptor, we say that the receptor is occupied by the
ligand.

Binding of ligands to receptors is governed by the concentrations
of bound and free receptor and ligand, as well as the binding affinity
of the ligand-receptor pair. Affinity is a measure of the propensity
of the ligand and receptor to combine. It is inversely related to the
equilibrium dissociation constant, KD. The half-maximal inhibitory
concentration, IC50 (see Section 4.4), is not the same as KD. It offers
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8 background : central nervous system pharmacology

a more feasible, although less precise, measure of the in vivo binding
strength of a ligand to a receptor.

Occupancy is governed by affinity. Higher affinity (lower KD and
IC50) means that lower ligand concentrations are necessary to reach
a certain occupancy.

Some, but not all, ligands binding to a receptor will activate the re-
ceptor, and cause a cellular response. Ligands that cause an activation
of the receptor are referred to as agonists, while ligands that bind to
receptors without causing activation are referred to as antagonists.

Full agonists produce the maximal possible response, while partial
agonists only cause a partial response relative to that of a full ago-
nist. The ability of a ligand to activate a receptor is referred to as the
efficacy.

Drug action in a living organism is of course more intricate than
a simple ligand-receptor interaction. Many complex molecular and
physiological processes take place both before and after a drug binds
to its target protein. Also, the binding might be enhanced or inhibited
by the presence of other molecules.

2.2 pharmacokinetics

The dynamic distribution of a drug within the body is referred to as
pharmacokinetics. The human body is a complex system, and there
are numerous factors that affect where, how, and how fast drugs
move within a living organism.

The concentration of a drug in plasma (CP) is often assumed to be
related to the concentration of the drug at the target site (Ritter et al.,
2020c). Often, and especially for drugs targeting the CNS, it is easier
to measure the drug concentration in plasma than in the extracellu-
lar fluid of the target tissue. With intravenous administration of the
drug, the plasma concentration will increase rapidly (with the rate
of delivery), and then (for most drugs) decrease in an approximately
exponential manner governed by the drug’s elimination half-life (Hal-
lare and Gerriets, 2022). For other administration methods, the shape
and area of the plasma curve will also depend on the fraction and
rate of absorption into the bloodstream (Holford, 2016).

Drug in the blood stream can be distributed across the body. Deliv-
ery of drug molecules to the CNS is complicated by the BBB. Some
small, mostly lipophilic, molecules can traverse the BBB through pas-
sive diffusion (Abbott et al., 2010). Other molecules must rely on ac-
tive transport mechanisms.

Inside the brain, the drug can be distributed in different concentra-
tions in extracellular and intracellular fluid, brain microvasculature,
and cerebrospinal fluid, and fluid flow within the brain will affect
the drug distribution (Vendel, Rottschäfer, and de Lange, 2019). Non-
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specific protein binding inside the brain can affect the drug activity
(Srinivas, Maffuid, and Kashuba, 2018).

Drugs are eliminated from the body through metabolism and ex-
cretion.

Although a drug will undergo the same general processes in differ-
ent people, there will always be inter-individual variability in phar-
macokinetics. Factors such as health, age, sex, genetic variations, and
interactions with other drugs can all affect how a drug is absorbed,
distributed, metabolized and eliminated.

2.3 drug discovery and development

Drug discovery and development is very costly and time consuming.
Compared to drug development in general, development of CNS-
targeting drugs faces lower success rates and longer development
times (Mullard, 2016; Srinivas, Maffuid, and Kashuba, 2018).

In the discovery process, new candidate drugs are found. First, a
suitable target must be identified. Then, thousands of molecules are
screened, and the best candidates are optimized.

If promising leads are identified in the discovery process, they can
be moved to preclinical development. This entails extensive testing,
including studies on safety and toxicology, and pharmacokinetic and
pharmacodynamic testing. Promising results in the preclinical phase
are not a guarantee for success in humans (Srinivas, Maffuid, and
Kashuba, 2018). In this phase, the feasibility of commercial-scale pro-
duction is also evaluated (Ritter et al., 2020b).

Clinical development is the most time consuming and costly step,
and only approximately 10% of all drugs entering clinical evaluation
make it to market (Smietana, Siatkowski, and Møller, 2016). Phase
I studies are small, and typically conducted in healthy populations,
with a focus on pharmacology and side-effects. Phase II studies are
conducted in patients, and are focused mainly on clinical effects. Dos-
ing regimen for future studies is typically also determined in this step.
In phase III the potential drug is evaluated in a large-scale, double-
blinded, randomized clinical trial. For drugs that achieve approval for
marketing, a fourth phase of post-marketing surveillance follows.





3
P O S I T R O N E M I S S I O N T O M O G R A P H Y

Positron emission tomography (PET) is a molecular imaging tech-
nique which enables visualization and quantification of metabolic
and molecular processes in the living human body. By labelling mole-
cules with a positron-emitting radionuclide, the distribution of that
molecule can be measured by an external detector. In theory, PET
imaging could be used to track the in vivo movement of any molecule.
The only constraint is whether it can be labelled with a positron-
emitting radionuclide with a suitable half-life. Consequently, the po-
tential applications of PET imaging are continuously expanding.

Unlike other medical imaging modalities like magnetic resonance
imaging (MRI) and computed tomography (CT), PET does not inher-
ently provide anatomical information. Instead, a PET image shows
the distribution of the radiolabelled molecule (radiotracer). The spa-
tial resolution of PET is substandard to that of MRI and CT. The
strength of PET lies in its high molecular sensitivity. PET images are
almost always combined with a structural imaging modality to assign
spatial context. For brain applications, PET images are commonly co-
registered to MR images.

The two most frequently used radionuclides for PET radiotracers
targeting the CNS are Carbon-11 (11C) and Fluorine-18 (18F). Their
half-lives are 20.3 min and 109.8 min, respectively. Other available
radionuclides for PET include Nitrogen-13 (13N), Oxygen-15 (15O),
Gallium-68 (68Ga), Rubidium-82 (82Rb), and Zirconium-89 (89Zr).

PET is conceptually similar to Single photon-emission computed
tomography (SPECT), which is also based on injecting radioactive
tracers, and following their distribution with an external detector.
However, SPECT uses a different class of radionuclides, and differ-
ent detector setup and data acquisition. Also, unlike PET, SPECT is
not inherently quantitative, because much of the signal is attenuated
by collimators before reaching the detector.

3.1 basic principles of pet

The PET scanner detects annihilation photons, originating from beta
plus (β+) decay events. In this type of radioactive decay, a proton in
the nucleus of the protein-rich parent radionuclide is converted to a
neutron. Simultaneously, a positron (e+) and an electron neutron (νe)
are released. The result is a daughter nuclide with a lower atomic

11
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number (Z) but the same mass number (A) as the parent. The generic
equation for β+ decay is:

A
ZX → A

Z−1X
′ + e+ + νe, (1)

where X is the radioactive parent nuclide, and X ′ is the resulting
daughter nuclide. The energy, and initial velocity, of the released
positron depends on the parent, but also differs from decay to de-
cay (Knoll, 2010). Because the positron has a positive electric charge,
it will be slowed down by interactions with negatively charged elec-
trons. When sufficient kinetic energy has been lost, the positron will
annihilate with a nearby electron, resulting in the release of two pho-
tons, each with an energy of 511 keV, at an approximate angle of
180◦ to each other. The 511 keV energy of the annihilation photons
is linked to conservation of the mass of the annihilated electron and
positron (Cherry, Sorenson, and Phelps, 2012b).

The distance that the positron travels after the beta decay depends
both on its initial energy and random interactions with electrons. The
density of the surrounding tissue will also affect the range. In water,
the average positron range is 1.03 mm for 11C, and 0.64 mm for 18F
(Cherry, Sorenson, and Phelps, 2012a).

3.2 radionuclide and radiotracer production

Positron-emitting radionuclides for PET are typically produced by cy-
clotrons, a type of particle accelerator. In the cyclotron, charged par-
ticles are accelerated by an alternating electric field, while being held
to a spiral trajectory by a perpendicular magnetic field. The shape of
the cyclotron is circular, and the electric field is applied to the parti-
cles through a gap across the center. A ion source is placed near the
middle of the cyclotron. The result is a particle trajectory resembling a
spiral, where particles travel with a fixed radius in a semicircle, before
entering the gap, where it is accelerated, and travels with a slightly
higher radius before again reaching the gap (Cherry, Sorenson, and
Phelps, 2012e). When the particles have reached the maximum or-
bital radius, they are directed at a target, either inside or outside the
cyclotron. For radionuclide production, the accelerated charged par-
ticles are aimed at a target consisting of a parent compound. When
hit by the charged particle, the parent compound undergoes a nu-
clear reaction resulting in the desired radionuclide. Some common
targets include nitrogen-14 for production of 11C, and oxygen-18 for
production of 18F (Radford and Lapi, 2019).

Following radionuclide production, a radiochemist combines it with
a molecule to produce a radiotracer. For smaller molecules, radiola-
belling is usually done by either direct substitution of an atom with
a radioactive isotope of the same element, or by creating an analog
molecule (Cherry, Sorenson, and Phelps, 2012e). Radionuclides such
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as 11C and 15O are very useful, because they are easily incorporated
into biologically relevant molecules. 18F has very desirable imaging
properties, but can often not be directly substituted into a molecule
of interest without dramatically changing its characteristics (Ermert
and Neumaier, 2019). Therefore, 18F is often used to create analogs.
For example, the most widely used PET tracer, 2-deoxy-2[18F ]fluoro-
D-glucose ([18F]FDG ), is created by replacing a hydroxyl group with
18F.

Another important consideration for radiotracer production is that
the half-life of the radionuclide must match the time course of radio-
tracer distribution in the body. So, even though oxygen is suitable
for direct substitution, the relatively short half-life of 15O (2.03 min)
greatly limits its possible applications (Gómez-Vallejo et al., 2019).
Shorter-lived radionuclides also demand rapid synthesis techniques,
further limiting their potential uses. Shorter half-lives can also limit
transport of the radiotracer. Tracers labelled with shorter-lived ra-
dionuclides, such as 11C and 15O must be produced on site, while
those labelled with longer-lived radionuclides, such as 18F , can be
transported to PET centers without an on site cyclotron and radio-
chemistry unit. On the other hand, longer half-lives result in larger
radiation doses.

In the radiolabelling process, only a relatively small fraction of the
product molecule will contain the radioactive nuclide (Antoni, 2019).
When producing a radiotracer it is especially important that the prod-
uct has a high specific activity (activity per unit mass), to ensure suf-
ficient number of decay events without administering so much unla-
belled compound that binding is saturated (see Chapter 4).

3.3 the pet system

A PET camera consists of blocks of scintillation detectors, placed in
a cylinder surrounding the patient. The detectors are made of crys-
talline solids with high atomic mass. When a photon with sufficient
energy hits the crystal it scintillates, meaning that light is produced.
The amount of light emitted by the crystal is proportional to the en-
ergy of the photon (Cherry, Sorenson, and Phelps, 2012d). PET scin-
tillation detectors are made of materials that have been specially de-
signed to detect photons within an energy window surrounding the
511 keV of annihilation photons. The scintillating crystals are con-
nected to either photomultiplier tubes or avalanche photodiodes, that
produce an electric current in response to the light emitted in the crys-
tal (Cherry, Sorenson, and Phelps, 2012d).

When two photons are detected by the PET system within a coinci-
dence time window, typically in the order of nanoseconds, it can be
assumed that an annihilation event took place somewhere along the
line connecting the two detector elements where the photons were
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detected. This line is often referred to as the line of response (LOR).
In time-of-fligh PET, the precision is increased by using the difference
in detection times to give probabilistic evidence to the origin of the
signal along the LOR (Vaquero and Kinahan, 2015).

Both the radius and axial length of the cylinder of detectors can
differ immensely between scanners. The Siemens High-resolution re-
search tomopraph (HRRT) is a dedicated brain scanner with a field
of view (FOV) designed to image the human brain. Small-animal PET
scanners have smaller, both radial and axial, FOV. Longer axial FOVs
have been limited by count-rate capabilities and timing resolution, as
well as concerns regarding computational and economic costs (Poon
et al., 2012). With recent improvements in detector technology and
computational power, the last few years have seen the introduction of
systems with increasing FOV, such as the EXPLORER total-body PET
scanner, with a nearly 2-m axial length (Badawi et al., 2019).

PET has relatively poor spatial resolution compared to other med-
ical imaging modalities, such as MRI and CT. Because positrons will
travel a finite distance before an annihilation event occurs, PET im-
ages will always be somewhat blurred, even if the detector resolution
were infinitely high. The resolution is also limited by the size of the
detector elements, and the depth and material of the scintillator.

Coincidence detection obviates the need for collimators to deter-
mine the origin of a photon. For this reason, PET has much higher
sensitivity than planar nuclear imaging modalities, such as SPECT,
where collimators block a majority of emitted photons from being
detected (Slomka et al., 2015). With 3D acquisition, the sensitivity is
not uniform throughout the FOV, but is higher towards the middle,
where events are more likely to be detected.

3.4 data acquisition

The mode of delivery depends on the radiotracer, but typically it is
administered by intravenous injection.

Prior to data collection, a transmission scan, with a radioactive rod
source extending along the length of the scanner, is often performed
(Cherry, Sorenson, and Phelps, 2012c). The objective of this is to ob-
tain information that can be used to correct the PET data for differ-
ent attenuation of photons originating at different depths and from
different tissues. In hybrid imaging systems, information from the
CT or MRI scan can instead be used to generate attenuation maps.
This is relatively straight-forward for CT, because the pixel values in
Hounsfield units have a simple bilinear relationship with the PET lin-
ear attenuation coefficient (Lee et al., 2016) . MR-based attenuation
maps rely on segmentation into different tissue classes, such as vas-
culature, fat, muscle, bone and air. Generally, MR-based attenuation
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maps are more challenging to obtain, but vast improvements have
been made in this field over the last few years (Olin et al., 2022).

In some applications of PET, for example in oncology, only the ac-
cumulation of radiotracer is of interest. In those cases, the tracer is ad-
ministered some time before scanning to achieve some kind of steady
state prior to data collection. The scan duration is usually relatively
short. In these cases, data is acquired statically, meaning that only
one image, showing the total accumulated activity in tissue over the
course of the scan, is generated. Most clinical PET scanners have a rel-
atively short FOV. In order to get a PET image that is longer than the
field of view, the patient must be moved during the data acquisition
by changing the bed position.

In other cases, we are more interested in how the radiotracer is
delivered, distributed and metabolized in the body. This could be
in cardiology to look at the function of the heart, or in neurology,
to study cerebral blood flow, or distribution of proteins of interest.
For these applications, the tracer is administered while the subject is
already in the scanner, so that also the initial distribution of the tracer
as it enters the body is recorded. Data is acquired dynamically, and
the measured activity is divided into discrete time intervals, called
frames. This results in time-activity curves (TAC), where the mean
activity in each frame is plotted against the frame mid times. With
dynamic acquisition it is not feasible to move the subject during an
ongoing scan, and the image size is limited by the PET system’s FOV.

For dynamic acquisitions, arterial blood is often collected through-
out the scan to allow for full quantification.

3.5 data reconstruction, corrections and sources of
noise

In modern PET systems, acquisition is typically three-dimensional.
With two-dimensional data acquisition, only coincidence events de-
tected by the same detector ring are recorded, while in 3D acquisi-
tion any combination of detector elements in the cylinder can form a
LOR. Some PET systems allow for list mode acquisition, where each
coincidence event is sequentially recorded, along with information
about time and involved detector pairs. For dynamic scans, this ac-
quisition procedure allows the temporal framing to be decided and
changed after the data acquisition is complete (Rahmim, Tang, and
Zaidi, 2009).

Once the number and duration of the frames has been decided,
they are individually reconstructed into tomographic images. The
two most common approaches are filtered back projection and itera-
tive reconstruction. Generally, iterative reconstruction is computation-
ally heavier, but also gives better statistics and less artefacts (Vaquero
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and Kinahan, 2015). Also, iterative reconstruction is compatible with
more specialized detector geometries.

Not all pairs of detected photons originate from true coincidence
events. Random coincidence is when two unrelated photons are de-
tected within the same coincidence time window. This typically leads
to a near-uniform blurring of the image. Scatter coincidence is when
annihilation photons change direction when interacting with matter.
This establishes an incorrect LOR, which is displaced from the true
location of the annihilation event. Several correction strategies exist
for both types of false coincidence events, but their effects cannot be
completely removed (Cherry, Sorenson, and Phelps, 2012c).

Compared to scatter and random correction, attenuation correction
is relatively easy. Because the probability for a pair of annihilation
photons to both reach the detectors decreases with the distance trav-
elled through matter, and the density of that matter, the likelihood
of detection is not the same for all LORs. This is corrected based on
transmission scans or CT- or MR-based attenuation maps.

Other factors that contribute to noise and reduced spatial resolu-
tion in PET include motion of the subject and partial volume effects
(see Section 4.1).
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Q U A N T I F I C AT I O N O F B R A I N P E T D ATA

For PET images to be useful for quantitative assessments, the system
must be activity calibrated. By scanning a phantom with known activ-
ity concentration, a correction factor [

(
Bq cm−3

)
/
(
counts voxel−1

)
]

can be obtained. The count rate of each voxel can then be multi-
plied with the correction factor to yield activity concentration (CT )
in Bq cm−3. This correction is done automatically by the scanner.

When a decay event is detected by the scanner, information about
the time and approximate position of that event is available. Radioac-
tivity is a stochastic process, and the radionuclide could emit a positron
at any given time. Thus, the detected activity could originate from
tracer that is bound to its intended target, but also from tracer that is
nonspecifically bound, or free in tissue or blood.

For full quantification of PET, it is necessary to collect data dynam-
ically, and to start the data collection at, or before, the injection of the
radiotracer. Detected events are binned into temporal frames. These
frames are typically shorter (10 s – 1 min) in the beginning, when
the activity concentrations in tissue change rapidly, and longer (5 –
15 min) towards the end of the scan, when much of the activity has
decayed. Generally, framing is chosen so that the number of counts
in each frame is relatively constant, with the aim of keeping the noise
level consistent throughout the scan.

When PET data has been acquired statically, the binding is rou-
tinely expressed in standardized uptake value (SUV), which is the
activity normalized by the injected dose and some measure of the
subject’s size, typically the body mass (Thie, 2004). SUV normalized
by body mass is given by,

SUV =
CT ·BM
Ainj

, (2)

where CT is the activity concentration in the target tissue, Ainj is the
total injected activity, and BM is the body mass of the subject. By
normalizing the activity, it becomes more comparable across subjects,
but SUV is still just a measure of the total activity and cannot sepa-
rate the specific signal from other sources. Simplified quantification
methods and semi-quantitative outcome measures, such as the SUV,
can in some cases be very useful. For example, in clinical settings, less
invasive acquisition methods and shorter scan durations are often es-
sential. Still, simplified methods must always be carefully validated
against full quantification on a tracer-to-tracer basis (Lammertsma,
2017). Further, for many applications of PET, such as drug occupancy
studies, there are no valid alternatives to full quantification.

17
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For the kinetic modeling methods presented in this chapter to be
valid, there are two especially important assumptions that must be
adhered to (Lubberink and Heurling, 2019). The first is the tracer prin-
ciple, which states that the concentration of radiotracer in the body
must be low enough that the system is not perturbed by it. For compli-
ance with the tracer principle it is important that the specific activity
of the injected radiotracer is high. Often, it is assumed that less than
5% of the specific target is bound by the radiotracer, including also
the administered unlabelled tracer. The second important principle is
that the system should not change during an ongoing PET scan.

4.1 data preprocessing and region of interest defini-
tion

Before PET data can be quantified it has to go through some pre-
processing steps. For dynamic PET data, the goal of this is to go from
images of radioactivity in the brain to TACs, describing how the ac-
tivity in a voxel, or a region of interest (ROI), changes over the course
of the scan.

The first pre-processing step is often motion correction. Dynamic
PET scans are usually relatively long (> 90 min), and some involun-
tary or voluntary motion during the course of the scan is difficult
to avoid. For PET neuroimaging, it is common practice to fix or re-
strain the head to reduce motion. Often, this can be enough to limit
the effects of motion, but at other times it might be necessary to do
some motion correction. A number of different solutions for exter-
nal motion tracking are available (Kyme and Fulton, 2021), but data-
driven motion correction is more common. The frames are realigned
by rigid registration to either a reference frame or a mean or sum
image (Costes et al., 2009). Because of the low temporal resolution of
PET, this approach does not necessarily correct for abrupt motions,
but can cancel the effects of the position of the subject drifting during
the course of the scan.

Because PET images do not inherently contain anatomical informa-
tion, the images are almost always co-registered to anatomical images
for spatial context. This step is a necessity for ROI-based quantifica-
tion. In PET neuroimaging, a personal T1-weighted MR image is typ-
ically co-registered to the PET image. Then, the MR data can be used
to delineate ROIs, so that the PET signal in each voxel can be assigned
to a region.

A number of different methods are available for ROI delineation.
Regions can be drawn manually on each subject’s MR image. This is
a decreasingly common approach for anatomical regions, but can still
be useful for smaller or non-anatomical regions, such as lesions and
tumors. In general, MR atlases are used for automatic definition of
anatomical ROIs (Svarer et al., 2005).
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Another image processing step, which is especially important when
using smaller ROIs is partial volume correction. Partial volume effects
is the spillover of activity from tissues with high activity to an adja-
cent low-signal region, leading to an underestimation of the activity
in the former and an overestimation of the activity in the latter (Rous-
set et al., 2007).

Many of the preprocessing steps are based on information from
the MR image, and thus contribute to the total noise of the outcome
parameters. The choice of pre-processing steps and methods can have
a significant effect on the outcome of PET studies, and thus need to
be considered carefully (Nørgaard et al., 2020).

4.2 tracer kinetic modelling

For tracer kinetic modelling, the radiotracer is typically administered
as a bolus injection. That is, all the tracer is administered over a rel-
atively short time at the beginning of the PET scan. The radiotracer
can also be administered as bolus followed by constant infusion. The
goal of this administration protocol is often to reach steady state con-
ditions, which allows for more straightforward estimation of outcome
parameters (Carson et al., 1993).

For full quantification of PET data, the tracer concentration both in
the ROI and in plasma must be measured. For certain tracers, such
as [15O]water and [18F]FDG, metabolite corrections are not neces-
sary, which means that image-derived input functions are feasible
(Okazawa et al., 2018; Zanotti-Fregonara et al., 2011). For most trac-
ers however, arterial samples are necessary to calculate the radioac-
tivity concentration in plasma. Only unmetabolized tracer in plasma
is typically able to cross the BBB. Therefore, to calculate an arterial
input function (AIF, CP), the measured activity in blood is corrected
both for the ratio of activity concentration in plasma to that in whole
blood, and for the fraction of activity originating from radioactive
metabolites of the parent tracer.

Often, but not always, kinetic models can also account for the pres-
ence of blood in the ROI. For this purpose, the total activity in blood
(including both parent tracer and radiometabolites) is used. The frac-
tional blood volume (vB) can either be fitted or fixed (typically to
0.05 for the human brain). The total PET signal (Ctotal) can be ex-
pressed as the sum of the contributions from tissue and blood, as in
the following equation,

Ctotal(t) = (1− vB) ·CT (t) + vB ·CB(t),

where CT is the activity concentration in tissue, and CB is the activity
concentration in blood.

Quantification methods based on AIFs are often referred to as inva-
sive, reflecting the collection of arterial blood. For many radiotracers,
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non-invasive quantification is also possible. These methods typically
rely on the presence of a reference tissue: a region that is devoid of
the tracer’s specific target and with the same level of non-specific and
free tracer concentrations. Before reference region approaches can be
used, they should be carefully validated against full invasive quantifi-
cation.

Depending on factors such as how data is collected, whether or not
an AIF is available, and whether or not a reference region is avail-
able, people might choose to use different methods to quantify PET
data, often resulting in different outcome measures. This variability
of quantification methods can complicate comparison of results be-
tween studies.

4.2.1 Key Parameters

One of the most frequently reported outcome measures from PET
ligand studies with full invasive quantification is the total distribution
volume, VT (Innis et al., 2007). The distribution volume, conceptually
similar to a partition coefficient, is the ratio of tracer concentration in
tissue (CT ) to that in plasma (CP) at equilibrium,

VT =
CT

CP
. (3)

Thus, in an invasive bolus-infusion experiment at equilibrium condi-
tions, VT could be calculated directly by dividing the tissue concen-
tration by the plasma concentration. In a bolus injection experiment,
where equilibrium is not reached, other approaches to calculating VT

must be used. In these cases, it can be helpful that VT is equal to the
ratio of the area under the tissue curve to the area under the plasma
curve,

VT =

∫∞
0 CT (t)dt∫∞
0 CP(t)dt

. (4)

Because we only measure activity over a finite time this cannot be
used to calculate VT directly. However, for a given model, Equation 4
can be reworked to express VT in terms of the model microparame-
ters.

The specific distribution volume (VS) and non-displaceable distri-
bution volume (VND), are similarly defined to the total distribution
volume, as the equilibrium ratio of the concentration of specifically
bound tracer (CS) and non-displaceable tracer (CND), respectively, to
CP. The total distribution volume is the sum of the non-displaceable
and specific distribution volumes, VT = VND + VS.

Similar to distribution volumes, binding potentials (BP) are also
equilibrium ratios of different states of the tracer. Specifically, they
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are the ratio of the concentration of specifically bound tracer to some-
thing (Innis et al., 2007). Binding potentials are measures of the prod-
uct of receptor density and affinity. Density and affinity cannot be
disentangled by in vivo PET, and so binding potentials are the clos-
est we can get to a measure of either (Mintun et al., 1984). The most
frequently reported binding potential, the binding potential with re-
spect to the non-displaceable compartment (BPND), is the equilib-
rium ratio of tracer concentration in the specific compartment to that
in the non-displaceable compartment. BPP is the equilibrium ratio
of tracer concentration in the specific compartment to that in plasma
(same as VS), and BPF is the equilibrium ration of tracer concentra-
tion in the specific compartment to the concentration of free tracer in
plasma. BPND can be expressed in terms of distribution volumes as,
BPND = VS/VND, or BPND = VT/VND − 1.

When VT and BPND are used as outcome measures, changes are
normally assumed to reflect changes in the specific signal only. How-
ever, both parameters are also dependent on the non-displaceable
component. Before VT s and BPNDs can be compared across groups
or before and after an intervention, it should be considered whether
also the non-displaceable binding could differ between the two con-
ditions.

4.2.2 Compartment Models

Compartment models are the most frequently used type of kinetic
model for PET ligand quantification. A compartment represents an
anatomical, physiological or biochemical state of the the PET radio-
tracer. These models describe the transfer of the tracer between differ-
ent compartments.

The goal of compartment models is not to accurately represent the
underlying biology. Instead, they are meaningful approximations that
provide solvable differential equations. All approximations and as-
sumptions must be relevant to, and validated for, the specific tracer
that they are applied to, and for some tracers the appropriate choice
of model may vary between different regions. Irrespective of the num-
ber of compartments, the concentration of tracer within one single
compartment is always assumed to be homogenous.

The most complex compartment model that can be reliably fitted to
PET data is the two-tissue compartment model (2TCM). The 2TCM
(Phelps et al., 1979), as illustrated in Figure 1b, has three compart-
ments: one plasma compartment and two tissue compartments: the
non-displaceable compartment and the specific compartment. The
first compartment is the AIF (CP). The non-displaceable compartment
(CND) represents tracer that is either free in extracellular and intracel-
lular fluid or non-specifically bound in tissue. It is a key assumption
of this model that free and non-specifically bound tracer is in equi-
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(a) The one-tissue compartment model (1TCM).

(b) The two-tissue compartment model (2TCM).

Figure 1: The two most common PET compartment models.

librium. For ligand studies, the specific compartment (CS) represents
tracer that is specifically bound to the target protein.

The 2TCM is described by the following system of differential equa-
tions:

dCND(t)

dt
= K1CP(t) − (k2 + k3)CND(t) + k4CS(t)

dCS(t)

dt
= k3CND(t) − k4CS(t).

K1, k2, k3 and k4 are the kinetic rate constants describing the rate of
transfer of tracer between the compartments. K1 [mgmin−1 mL−1]
represents the delivery of tracer across the BBB, and is the product
of flow and extraction. k2 [min−1] represents the functional efflux
of tracer out of the brain. k3 [min−1] is the combined forward rate
constant (k3 = konfNDBmax, where kon is the association constant of
the ligand-target binding, fND is the fraction of free tracer in the non-
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displaceable compartment, and Bmax is the concentration of available
targets). k4 [min−1] is the dissociation constant koff.

The rate constants are referred to as model microparameters. These
parameters can often not be estimated with high precision or stabil-
ity, which is why macroparameters, like VT , are typically estimated
instead. For the 2TCM, VT is calculated from microparameters as,

VT =
K1

k2

(
1+

k3
k4

)
.

If equilibrium between the non-displaceable and specific compart-
ments can be assumed to be reached rapidly, a simpler compartment
model, the one-tissue compartment model (1TCM), can be used. This
model, as illustrated in Figure 1a, has only two compartments: the
AIF (CP) and tracer in total tissue (CT = CND + CS). The 1TCM is
described by the differential equation,

dCT (t)

dt
= K1CP(t) − k2CT (t).

Changing the number of compartments in the model also changes
the meaning of the model rate constants. Even though they have the
same name, the 1TCM k2 is not the same as the 2TCM k2.

The PET compartment models are linear systems with constant co-
efficients, and are relatively trivial to solve analytically, for example
using the Laplace transform. For the 1TCM, the solution to the model
ODE is

CT (t) = K1CP(t)⊛ e−k2t,

where ⊛ is the convolution operator. This is the AIF (CP) convoluted
with the system’s impulse response function (IRF). For increasing
number of compartments the model solutions become much longer,
but will always be the convolution of the AIF with the IRF, as long
as the system is linear. For n tissue compartments, the IRF will be
the sum of n exponential functions (Gunn, Gunn, and Cunningham,
2001).

4.2.3 Reference Tissue Approaches

Reliable estimation of specific binding measures normally requires
the use of a reference region. A suitable reference tissue is a region
that is devoid of the specific target of the radiotracer, but otherwise
has the same characteristics as the target tissue (Heurling et al., 2017).
In competition with another ligand for the same specific target as the
PET tracer, the total binding in the reference region should ideally be
unaltered. In other words, the binding in the reference region is said
to be nondisplaceable, and ideally the reference region VT should be
the same as the VND of the target region.
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Thus, if a reference region exists BPND or VS can be calculated from
the VT s in the target (VROI

T ) and reference region (VRR
T ) as BPND =

VROI
T /VRR

T − 1 and VS = VROI
T − VRR

T , respectively.
Further, the presence of a reference region also allows for nonin-

vasive quantification, by using the reference region TAC as an indi-
rect input function instead of the AIF. The full reference tissue model
(Cunningham et al., 1991), assumes that the target tissue can be ex-
plained by a 2TC model and the reference tissue by a 1TC model,
and rearranges the model differential equation in a way that allows
the target tissue activity to be expressed as a function of the reference
tissue activity.

More frequently, the simplified reference tissue model (SRTM; Lam-
mertsma and Hume (1996)) is used for reference region based com-
partment modeling. The SRTM models the target tissue with a single
compartment, and thus requires a rapid exchange of tracer between
the nondisplaceable and specific compartments.

Reference tissues can also be used to calculate semi-quantitative
outcome measures. Standardized uptake value ratios (SUVR) are cal-
culated by dividing the SUV of the target tissue with that of the refer-
ence tissue. Because the tracer kinetics differ between the target and
reference regions, the SUVR value will change throughout the scan,
and deciding what part of the scan to use can be complicated (Lub-
berink and Heurling, 2019).

4.3 quantifying drug occupancy

The percentage of targets that is blocked by a drug is referred to
as the occupancy (∆). For PET-based estimation of occupancy, the
most frequently used experimental design is a baseline-block setup.
It is important that a PET radiotracer that binds specifically to the
same target as the drug is used. Each subject is scanned at least twice,
once at baseline, and again after the drug has been administered. Fre-
quently, the occupancy in the block scan is calculated as the fractional
decrease in BPND between the two scans. However, this approach is
only feasible for radiotracers with a suitable reference region. For the
2TCM it is technically possible to calculate BPND or BPP/VS directly
from the model microparameters, but the standard error of those will
usually be much higher than that of VT . For the 1TCM, it is not pos-
sible to calculate binding potentials from the microparameters.

In the absence of a reference region, strategies to estimate occu-
pancy rely on pooling multiple brain regions, and simultaneously es-
timating VND and ∆. The assumptions that VND and ∆ are uniform
across the brain, or at least across brain regions with similar tissue
composition, is widespread and difficult to get around.
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4.3.1 The Lassen Plot

The Lassen plot, often simply referred to as the occupancy plot, is a
linear regression analysis technique for estimation of occupancy and
VND from baseline-block PET data. It is based on the assumption that,
within-subject, both VND and ∆ are constant across the brain (Lassen
et al., 1995). From these assumptions, it follows that the VT s for the
baseline and block scans can be expressed as,

Vbaseline
T = VND + VS + ϵ (5)

Vblock
T = VND + (1−∆)VS + ϵ, (6)

where ϵ is noise.
The Lassen plot was first introduced by Lassen and colleagues in

1995, and later reformulated by Cunningham and colleagues to the
form it is mostly encountered today (Cunningham et al., 2010):

V baseline
T −V block

T = ∆
(
V baseline
T − VND

)
. (7)

V baseline
T and V block

T are k× 1 arrays of estimated VT values in k

ROIs for one subject. By plotting V baseline
T −V block

T against V baseline
T

and fitting a line through the data, the occupancy in the block-scan
can be estimated as the slope of the line, and the subject’s VND as the
line’s x-intercept.

4.3.2 Likelihood Estimation of Occupancy

Likelihood estimation of occupancy (LEO; Schain, Zanderigo, and
Ogden (2018)), is a maximum likelihood based estimator, founded
on the same key assumptions as the Lassen plot. However, instead
of using linear regression, LEO uses maximum likelihood estimation
(MLE) techniques to estimate ∆ and VND, accounting for the covari-
ance of the regional VT estimates. A major obstacle with using MLE
approaches is to accurately approximate the covariance matrix (Σ) Dif-
ferent approaches have been evaluated in the past, such as estimating
the covariance structure from test-retest datasets with the same radio-
tracer. (Naganawa et al., 2019; Schain, Zanderigo, and Ogden, 2018).

Assuming Gaussian noise, the observed VT values in ROI j can be
regarded as being sampled from a normal distribution with mean
according to the true VT s as expressed in Equation 19, and standard
deviation

√
Σj,j:

V baseline
T ∼ N (VND1+VS ,Σ)

V block
T ∼ N (VND1+ (1−∆)VS ,Σ) .

(8)
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Then, the combined negative log-likelihood function for V baseline
T

and V block
T , will be,

ℓ(VS,VND,∆ | Vb
T, Vd

T)

= −
(

Vbaseline
T − (VND1+ VS)

)T
Σ−1

(
Vbaseline

T − (VND1+ VS)
)

−
(

Vblock
T − (VND1+ (1−∆)VS)

)T
Σ−1

(
Vblock

T − (VND1+ (1−∆)VS)
)

(9)

Constant terms are excluded from Equation 9, because they will not
affect the coordinates of the function minimum. The dimensionality
of Equation 9 can be reduced by solving the partial derivative ∂

∂VS
ℓ =

0, resulting in,

VS =
V baseline
T − VND1+ (1−∆)

(
V block
T − VND1

)

1+ (1−∆)2
(10)

By substituting this expression into Equation 9, the LEO log-likelihood
function becomes a two-dimensional function.

Minimizing ℓ
(
∆,VND,VS | V baseline

T ,V block
T

)
returns the most

likely values for ∆, VND, and VS given the observed V baseline
T and

V block
T . Because the noise in the measurements are taken into con-

sideration, this approach should yield unbiased estimates.

4.3.3 In-Scan Intervention

For PET tracers that can be displaced by a competing drug, it is pos-
sible to estimate target occupancy from a single PET scan. This ex-
perimental setup has many potential advantages over the traditional
baseline-block study design. With one less scan, the radiation dose to
the research subjects is considerably reduced, as is the financial costs
of the experiment. Further, because both the baseline and block data
is collected during the same scan, potential diurnal variations and
test-retest effects could be avoided.

In previous work to model the in-scan displacement of PET ra-
diotracer, the competing drug has often been an endogenous neu-
rotransmitter. Existing models are rely on a reference region, and are
based on the SRTM. The LSSRM (referred to as LSRRM in later pub-
lications), was introduced in 2003 (Alpert et al., 2003). It is a linear
extension of the SRTM, where activation parameters are used to sta-
tistically detect the release of endogenous neurotransmitter. lp-ntPET
(linear parametric neurotransmitter PET), introduced in 2012, is an
extension of the LSSRM (Normandin, Schiffer, and Morris, 2012).

The extended simplified reference tissue model (ESRTM) was in-
troduced in 2006 (Zhou et al., 2006). With this method, the SRTM is
fitted to both the pre-intervention and post-intervention parts of the
scan. The BPNDs are estimated separately for each part, while the
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other parameters (R1 and k2) are constrained to be constant through-
out the entire scan. The target occupancy in the post-intervention part
is calculated as the fractional decrease in BPND.

4.4 quantifying the dose-occupancy relationship

When several occupancy datapoints, at different doses, have been col-
lected, it is possible to quantify the relationship between drug expo-
sure and target occupancy. Assuming a single binding site and non-
cooperative binding, the relationship between plasma drug concen-
tration (CP) and target occupancy (∆) can be expressed as,

∆ = ∆max
CP

CP + IC50
, (11)

Where ∆max is the maximal attainable occupancy, and IC50 is the
half-maximal inhibitory concentration (i. e. plasma concentration cor-
responding to an occupancy of ∆max/2), a measure of the protein-
ligand binding strength. If the plasma drug concentration is not avail-
able, the administered dose can be used instead. In those cases, the
dose required for half-maximal occupancy will be estimated in place
of the IC50. Equation 11 is sometimes referred to as the Emax model.

∆max and IC50 are estimated by fitting the measured data to Equa-
tion 11. In theory, only two occupancy estimates are necessary to yield
the parameter estimates, but because of the noisy nature of both PET
data and plasma samples, several datapoints, ideally covering a wide
range of occupancies, is typically used (Takano et al., 2016). To ob-
tain the desired range of occupancies, it is routine to use an adaptive
study design, where the administered dose is decided based on the
occupancies estimated from previous scans.





5
C E N T R A L N E RV O U S S Y S T E M A P P L I C AT I O N S O F
P E T

5.1 cns pet tracers

PET neuroimaging is a wide field, spanning multiple radiotracers
and applications. Some of the more common applications include
[18F]FDG PET to detect altered patterns of glucose metabolism, and
imaging with radioligands for amyloid-beta and tau protein, both
neuropathological hallmarks of Alzheimer’s disease.

Radiotracing of neurotransmission can also be very useful, both
to inform clinical practice, aid in drug discovery, and for better un-
derstanding of brain function. Neurotransmitter systems that can be
imaged with PET include, among others, the dopaminergic, seroton-
ergic, GABAergic, and glutamatergic systems (Gunn et al., 2015).

An ideal CNS PET tracer needs to cross the BBB. It should bind
specifically to a target, with a suitable affinity. For quantitative imag-
ing, it is important that the kinetic profile can be described by avail-
able mathematical models. Ideally, there should also be relatively lit-
tle inter- and intra-subject variability in binding.

Here, some background is provided for the radiotracers that have
been used in the studies included in the thesis.

5.1.1 TSPO PET and [11C]PBR28

Neuroinflammation is a pathologic hallmark of several CNS diseases,
including Alzheimer’s, Parkinson’s, Huntington’s, and stroke (Belarbi
et al., 2020; Minter, Taylor, and Crack, 2016; Palpagama et al., 2019;
Stuckey et al., 2021). Although evidence suggests the involvement of
neuroinflammation in these disorders, its role is often not fully un-
derstood.

Existing and emerging targets for PET imaging of neuroinflamma-
tion include the purinergic receptors P2X7R and P2Y12R, triggering
receptor expressed on myeloid cells 1, cannabinoid receptor 2, and cy-
clooxygenase enzymes (Jain et al., 2020; Narayanaswami et al., 2018).

The most explored target for neuroinflammation PET imaging is
the 18-kDa translocator protein (TSPO). TSPO is a mitochondrial pro-
tein, involved in several functions, including transmembrane trans-
port of cholesterol. It is expressed on the outer mitochondrial mem-
brane of glial cells (Casellas, Galiegue, and Basile, 2002). TSPO is over-
expressed in activated microglia, but also present in other cells, in-
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cluding astrocytes and endothelial cells (Cosenza-Nashat et al., 2009;
Nutma et al., 2019).

Over the past three decades, numerous PET tracers targeting TSPO
have been introduced. The first TSPO PET tracer to gain widespread
popularity was [11C]PK11195. PK11195 is a potent TSPO antagonist,
which was first synthesised in 1983, and was first used as a 11C-
labelled PET tracer in 1986 (Benavides et al., 1983; Charbonneau et al.,
1986). Some less favourable imaging characteristics of [11C]PK11195,
including low level of BBB penetration and high levels of non-specific
binding in both plasma and tissue, motivated the development of nu-
merous second-generation TSPO tracers (Lagarde, Sarazin, and Bott-
laender, 2018), including [11C]DPA-713, [11C]ER176, and [18F]FEPPA
(Ikawa et al., 2017; Selleri et al., 2001; Wilson et al., 2008).

An issue with TSPO PET is that the reported results across stud-
ies are often conflicting (Dupont et al., 2017; Lagarde, Sarazin, and
Bottlaender, 2018).

[11C]PBR28 (Briard et al., 2008) is a very widely employed second-
generation TSPO PET tracer. Compared to [11C]PK11195, it has rel-
atively higher specific signal (Fujita et al., 2017). For many second-
generation tracers, including [11C]PBR28, the affinity to TSPO is af-
fected by a single nucleotide polymorphism on the TSPO gene (rs6971)
(Owen et al., 2010, 2012). Subjects are genotyped before inclusion
in PET studies, and are classified as either high-affinity (HAB), low-
affinity (LAB), or mixed-affinity binders (MAB). For [11C]PBR28, there
is nearly a two-factor difference in VT between HABs and MABs. For
LABs, the specific binding is too low for clinical applicability (Fujita
et al., 2017). It has also been shown that there are significant diurnal
changes in [11C]PBR28 VT (Collste et al., 2016).

Quantification of TSPO PET data is complicated by several factors,
including the presence of TSPO on the endothelium, and difficulties
with obtaining accurate measurements of plasma free fractions (Coll-
ste et al., 2016; Rizzo et al., 2014). The [11C]PBR28 kinetics are better
described by the 2TCM than the 1TCM (Fujita et al., 2008). A 2TCM
variation (2TCM-1K) that accounts for irreversible binding to endothe-
lial TSPO has been proposed for quantification (Rizzo et al., 2014).

Because TSPO is expressed throughout the brain, no suitable ref-
erence region exists for TSPO PET tracers. Still, many attempts have
been made at noninvasive quantification in TSPO PET. Several studies
have employed supervised clustering methods to extract voxels with
minimal specific binding. Others have calculated simple ratio-based
outcome measures. Both approaches have been shown to produce
outcomes that have very little association with AIF-based quantifica-
tion (Albrecht et al., 2018; Matheson et al., 2017; Plavén-Sigray et al.,
2018a).



5.1 cns pet tracers 31

5.1.2 Serotonin 2A Receptor and [11C]Cimbi-36

Serotonin (5-hydroxytryptamine; 5-HT) has been linked to several
CNS disorders. There are a total of fourteen serotonin receptor sub-
types. Some important PET tracers targeting the serotonin system
include [11C]WAY-100635 and [11C]CUMI-101 for serotonin 1A re-
ceptor, [11C]AZ10419369 for serotonin 1B receptor, [11C]SB207145 for
serotonin 4 receptor, and [11C]DASB for the serotonin transporter (Gi-
novart et al., 2001; Marner et al., 2009; Milak et al., 2010; Pike et al.,
1995; Varnäs et al., 2011).

The serotonin 2A receptor (5-HT2AR) is one of three serotonin 2
receptor subtypes. The 5-HT2AR is responsible for the hallucinogenic
effects of some recreational drugs (Halberstadt, 2015), and changes in
5-HT2AR levels has been linked with depression (Bhagwagar et al.,
2006). 5-HT2AR PET tracers include the antagonists [18F]Altanserin
(Sadzot et al., 1995) and [11C]MDL100907 (Talbot et al., 2012).

[11C]Cimbi-36 was the first 5-HT2AR agonist radiotracer to be val-
idated for applications in human brain (Ettrup et al., 2014). It has
a strong affinity to 5-HT2AR (Ettrup et al., 2011), but also binds to
the serotonin 2C receptor subtype (Ettrup et al., 2016; Finnema et al.,
2014).

Early analyses showed that the in vivo kinetics of [11C]Cimbi-36
were well-described by a 2TC model (Ettrup et al., 2014). In the same
study, it was demonstrated that the cerebellum VT was unchanged
after blocking, indicating that it can be used as a reference region. In
subsequent studies, reference tissue modeling with STRM has been
frequently employed (da Cunha-Bang et al., 2019; Madsen et al., 2019;
Yang et al., 2019). However, compared to the 2TCM, the SRTM slightly
underestimates the BPND (Ettrup et al., 2014). The magnitude of the
negative bias with SRTM quantification is comparable to that seen
in other radioligands, such as [11C]WAY-100635 (Parsey et al., 2000)
and [18F]FE-PE2I (Sasaki et al., 2012). [11C]Cimbi-36 BPNDs calcu-
lated with SRTM has relatively low test-retest variability (Ettrup et
al., 2016).

[11C]Cimbi-36 has been shown to be sensitive to changes in endoge-
nous serotonin levels, both in animals (Jørgensen et al., 2017; Yang et
al., 2017) and in humans (Erritzoe et al., 2020).

Several psychedelic and antipsychotic drugs have a high affinity
for 5-HT2AR (González-Maeso and Sealfon, 2009), and [11C]Cimbi-36
has been used to quantify 5-HT2AR occupancy by psilocin (Madsen
et al., 2019).

5.1.3 Imaging Synaptic Density and [11C]UCB-J

The synaptic vesicle protein 2A (SV2A) is transmembrane protein
found on synaptic vesicles. SV2 is present in all synaptic vesicles,
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with very little intervesicle variation in numbers (Mutch et al., 2011).
SV2A, the most widely distributed SV2 variant, has been assumed to
be a marker of synaptic density - a concept that lacks an exact formal
definition (Serrano et al., 2022).

PET tracers for SV2A have only recently been developed (Bretin
et al., 2013), and the interest in SV2A PET escalated with the intro-
duction of [11C]UCB-J in 2014 (Mercier et al., 2014). Even though
[11C]UCB-J is still a relatively new PET tracer, it has already been
used for a wide range of applications. Reduced SV2A measured by
[11C]UCB-J PET in humans has been reported in Alzheimer’s dis-
ease, cannabis use disorder, depression, epilepsy, frontotemporal de-
mentia, human immunudeficiency viruses, Parkinson’s Disease, and
schizophrenia (D’Souza et al., 2021; Finnema et al., 2020; Holmes et
al., 2019; Malpetti et al., 2022; Radhakrishnan et al., 2021; Venkatara-
man et al., 2022; Weiss et al., 2021; Wilson et al., 2020).

Early preclinical evaluation showed that [11C]UCB-J had excellent
imaging characteristics (Nabulsi et al., 2016), which was later con-
firmed in humans (Finnema et al., 2016, 2018).

1TCM-based quantification of [11C]UCB-J works better than 2TCM-
based quantification, has low test-retest variability, and works very
well with relatively short TACs (Finnema et al., 2018; Tuncel et al.,
2021). [11C]UCB-J VT and BPND are not affected by altered blood
flow (Smart et al., 2021). Efforts to move to noninvasive quantifica-
tion of [11C]UCB-J binding have been complicated by the ubiquitous
expression of SV2A. [11C]UCB-J signal is low, and only slightly dis-
placeable, in white matter (Varnäs, Stepanov, and Halldin, 2020). The
white matter region centrum semiovale has been proposed as a ref-
erence region, and used for SRTM-based estimation of [11C]UCB-J
BPND (Koole et al., 2019). However, as some portion of the centrum
semiovale binding is displaceable, it does not represent an ideal ref-
erence region.

SV2A is also the target for the antiepileptic drugs levetiracetam and
brivaracetam, making [11C]UCB-J PET a suitable tool for quantifying
the occupancy of these drugs.

5.2 pet imaging in cns drug development

In recent years, PET has become an important tool in drug develop-
ment, especially for drugs targeting the CNS. Previously, the assess-
ment of CNS drug candidates has had to rely on clinical outcomes
and peripheral pharmacokinetic measures (Gunn and Rabiner, 2017).
Because of the ability of PET to visualize and measure molecular pro-
cesses in vivo, there are several useful applications of PET in the drug
discovery and development processes. First, PET can be used to study
the kinetics and distribution of the drug. Further, if a PET tracer bind-
ing to the same target as the drug is available, target engagement can
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be confirmed by scanning subjects before and after administration of
the drug. If several such scans are pooled, it is possible to establish a
relationship between the administered dose and the target occupancy,
which can guide dosing. Lastly, PET can also be used to monitor treat-
ment effect, for example by measuring the extent of a tumor or lesion.

In clinical drug development, the costs increase with each consec-
utive phase of human testing. Therefore, it is very important to get
good assessment of a drug candidate’s likelihood for success as early
as possible, and stop development of candidates that do not display
the desired characteristics. Morgan’s pillars of drug survival were
first introduced in a study summarizing data from Phase II decisions
at Pfizer (Morgan et al., 2012). The three pillars represent the most
important characteristics of a drug that will define success in Phase
II. In the words of Gunn and Rabiner (2017), they can be summarized
as, (i) tissue exposure, (ii), target engagement, and (iii) pharmacologi-
cal activity. PET imaging can aid in the assessment of all three pillars
(Gunn and Rabiner, 2017).

Pillar i, tissue exposure, entails both that the drug must reach the
target site, but also, that it is not washed out too quickly. For drugs
targeting the CNS, the target is separated from the peripheral blood-
stream by the BBB, and concentration in plasma cannot be used as
evidence of available drug at its target site. If direct labeling of the
drug candidate with a positron emitting radionuclide is possible, PET
can be used to map its in vivo distribution (Varrone, Bundgaard, and
Bang-Andersen, 2022). This type of PET experiment, not only con-
tributes to confidence in BBB penetration, but kinetic modeling of
the data can also inform on how the drug is transported across the
BBB (Gunn and Rabiner, 2017). These distribution studies are best
performed just after or during the first trials in humans. However,
they are often also done pre-clinically before first-in-human studies
(Varrone, Bundgaard, and Bang-Andersen, 2022). For drug targets in
the periphery, direct radiolabeling of the drug can also be used to
confirm that the drug does not cross the BBB, in order to make sure
that CNS-related side-effects are unlikely (Varrone, Bundgaard, and
Bang-Andersen, 2022).

Pillar ii, target engagement, points to occupancy of the intended
target by the drug. For PET to contribute here, it is a requirement
that a PET tracer with the same specific target as the drug exists.
For new drug targets, development of suitable PET tracers to use for
this purpose can be a part of the drug development process (Var-
rone, Bundgaard, and Bang-Andersen, 2022). In PET occupancy stud-
ies, subjects are scanned both before and after the administration of
the drug. The target occupancy is calculated as the fractional decrease
in specific binding between the two scans. When occupancy data is
collected at several different doses, the dose-occupancy relationship
can be established. This can assist with dosing in subsequent stud-
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ies. Already in 1988, PET occupancy studies were used to establish
the therapeutic occupancy range for antipsychotic drugs targeting
the dopamine D2 receptor (Farde et al., 1988). Occupancy is both a
function of time and dose. For assessment of drug candidates, it can
therefore be of value to study the occupancy at different time points
after drug administration, especially if the free drug concentrations
in plasma and brain are not in equilibrium (Gunn and Rabiner, 2017)

Pillar iii, pharmacological activity, entails the functional modula-
tion of the target by the drug. Compared to the two first pillars, the
use of PET to assess pharmacologic activity is not yet as widespread
(Gunn and Rabiner, 2017). PET imaging can be used to detect down-
stream physiological changes induced by the drug. For example, dop-
amine transporter imaging has been used to monitor treatment re-
sponse in Parkinson’s disease, and amyloid-beta imaging to monitor
treatment response in Alzheimer’s disease (Parkinson Study Group,
2002; Rinne et al., 2010).
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A I M S

"What makes the desert beautiful," said the little prince,
"is that somewhere it hides a well [...] "

— Antoine de Saint-Exupéry,
The Little Prince
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A I M S

The overall aim of this thesis is to improve the utility of PET for quan-
tification of drug interactions in the living human brain. This aim
is reached by evaluating common assumptions concerning analytical
methods and experimental design, and by developing new analytical
methods, applicable for different types of tracers and study designs.

The specific objective for each paper is presented below.

Paper I: To investigate the assumption that nondisplaceable bind-
ing is comparable across subjects. Specifically, we investi-
gate whether the nondisplaceable component of the TSPO
PET tracer [11C]PBR28 is different between three clinical
populations and their matched controls.

Paper II: To provide evidence to guide the design of PET occupancy
studies. Further, to develop a new likelihood-based estima-
tor for drug interaction parameters.

Paper III: To develop and evaluate a new class of kinetic models,
which enables analysis of data from PET experiments where
a drug is introduced during the PET scan.
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PA P E R I

Words are the source of misunderstandings.

— Antoine de Saint-Exupéry,
The Little Prince
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M E T H O D S

In paper I, we compared the nondisplaceable, specific, and total dis-
tribution volumes (VND, VS, VT ) of clinical populations with their
matched controls.

7.1 data acquisition

The data in paper I consisted of four previously published datasets
with the TSPO PET tracer [11C]PBR28 . In one dataset, healthy sub-
jects were scanned before and after an intervention with the neuro-
toxin lipopolysaccharide (LPS; Sandiego et al. (2015)). The three re-
maining datasets consisted of clinical subjects with indications for
alcohol use disorder (AUD; Hillmer et al. (2017a)), first episode psy-
chosis (FEP; Collste et al. (2017)), and Parkinson’s disease (PD; Varnäs
et al. (2019)), each with matched healthy controls. The LPS and AUD
datasets were acquired at the Yale PET center (New Haven; Connecti-
cut, US), and the FEP and PD datasets were acquired at Karolinska In-
stitutet (KI, Solna, Stockholm, Sweden). An overview of the datasets,
with summary of some key information, is presented in Table 1.

In all four datasets, PET data was acquired in a high-resolution re-
search tomograph (HRRT; Siemens), and arterial blood was collected
throughout the scans. The PET scan duration was 120 min for the LPS
and AUD datasets, 90 min for the FEP dataset, and 72 min for the PD
dataset. In addition, all subjects underwent T1-weighted MRI scans
for region of interest (ROI) delineation.

All subjects were genotyped for the rs6971 polymorphism, and low-
affinity binders were excluded from all studies. Thus, all included
subjects were either high-affinity binders (HABs) or mixed-affinity
binders (MABs).

7.2 estimation of VT

VT was estimated using the standard two-tissue compartment model
(2TCM), with arterial plasma input functions (AIFs). The blood vol-
ume (vB) was fitted. In all datasets, VT values were reported for cere-
bellum and frontal cortex, except for the PD dataset, where striatum
was reported instead of frontal cortex. In addition, VT values in pari-
etal cortex, occipital cortex, temporal cortex, putamen, caudate and
thalamus were calculated.
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Group Genotype Sex Age

[F/M] [mean±SD (range)]

Sandiego et al., 2015

LPS challenge
3 HAB 0/3 28.0±6.0 (22.7 - 34.5)

5 MAB 0/5 23.6±5.1 (19.1 - 31.1)

Hillmer et al., 2017

AUD
7 HAB 40.9±7.9 (31.6 - 55.2)

7 MAB 37.9±10.4 (26.9 - 51.0)

Controls
8 HAB 37.4±9.0 (26.3 - 48.4)

7 MAB 32.8±14.6 (19.1 - 55.6)

Collste et al., 2017

FEP
6 HAB 1/5 29.8±8.2 (20 - 40)

10 MAB 4/6 27.7±8.8 (19 - 47)

Controls
9 HAB 5/4 27.8±9.3 (22 - 50)

7 MAB 4/3 25.7±8.2 (20 - 43)

Varnäs et al., 2019

PD
8 HAB 0/8 63.6±4.3 (57.1 - 69.1)

8 MAB 1/7 63.4±6.4 (55.2 - 73.2)

Controls
8 HAB 1/7 64.9±4.9 (57.8 - 71.5)

8 MAB 0/8 62.1±5.3 (56.1 - 72.0)

Table 1: Summary of datasets, with basic demographic information, from
paper I.
F = female; M = male; SD = standard deviation; HAB = high-affinity
binder; MAB = mixed-affinity binder; LPS = lipopolysaccharide;
AUD = alcohol use disorder; FEP = first-episode psychosis; PD =
Parkinson’s Disease.
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7.3 simultaneous estimation of VND

Brain-wide VND values for each subject were calculated using simul-
taneous estimation of VND (SIME; Ogden, Zanderigo, and Parsey
(2015)). SIME works by predefining a grid of possible VND values.
For each value on the grid, a 2TCM is fitted to a group of ROIs,
with the constraint that k2 = K1 · VND in all regions. This reduces
the number of estimated parameters from 4 to 3 for each ROI, mak-
ing the VND estimation much more reliable than in the traditional
2TCM. The residual sum of squares (RSS) for all frames and ROIs is
then computed for all VND values in the grid. Frames were weighted
by the square root of the frame duration. No differential weighting
was applied to the ROIs, because it has been shown for [11C]WAY-
100635 that size-based ROI weights have minimal effect on SIME VND

(Schain et al., 2017). The VND value that minimizes the RSS is chosen
as the brain-wide estimate for VND.

For our analyses we chose a VND grid ranging from 0 to 5, with
a step size of 0.1. The range was chosen, because previous research
suggests that this should comfortably cover potential VND values for
[11C]PBR28 (Plavén-Sigray et al., 2019; Schain et al., 2018). In our im-
plementation of SIME, we included eight regions; cerebellum, pari-
etal cortex, frontal cortex, occipital cortex, temporal cortex, putamen,
caudate and thalamus. vB was fitted for each ROI separately.

7.4 estimation of VS

Regional VS values were calculated from 2TCM-VT s and SIME-VNDs,
as VS = VT − VND.

7.5 statistical analyses

All statistical analyses were performed with MATLAB (version 9.5;
MathWorks). For the LPS dataset, the percentage change in each out-
come measure (VT , VS, VND) between the two scans, was calculated
as 100 · (preLPS− postLPS)/preLPS. A paired-sample t-test was ap-
plied to test the difference between the pre- and post-LPS scans.

For the three clinical datasets (AUD, FEP, and PD) a univariate
2-way analysis of variance (ANOVA) without interaction terms was
used, where log-transformed outcome measures were the dependent
variables, and diagnosis and genotype were fixed factors:

log(Y) =β0 +βdiagnosisxdiagnosis +βcontrolxcontrol

+βHABxHAB +βMABxMAB.

Y represents the outcome measures (VT , VS, VND), and diagnosis is
either AUD, FEP or PD. All xs indicate group assignment, as either 0
or 1. The percentage difference in each outcome measure between the



44 paper i : methods

diagnosed groups and controls was calculated from the regression co-
efficients (β) as 100 · eβdiagnosis−βcontrol − 1 (Schain et al., 2018). From
the ANOVA model equation,

YHAB
diagnosis

YHAB
control

=
eβ0eβdiagnosiseβHAB

eβ0eβcontroleβHAB
= eβdiagnosis−βcontrol

YMAB
diagnosis

YMAB
control

=
eβ0eβdiagnosiseβMAB

eβ0eβcontroleβMAB
= eβdiagnosis−βcontrol .

It follows that the percentage difference in outcome measures be-
tween the diagnosis and control groups across genotypes can be cal-
culated as,

100 · Ydiagnosis − Ycontrol

Ycontrol
= 100 ·

(
eβdiagnosis−βcontrol − 1

)

Percentage difference in outcome measures between HABs and MABs
was computed in the same manner, as 100 · eβHAB−βMAB − 1.

The ANOVA was later repeated with a diagnosis·genotype inter-
action term, revealing no significant effect interaction on any of the
outcome measures in any of the datasets.

To exclude the possibility that atrophy was driving any between-
group difference in VND, the ANOVA was rerun for VND on the
AUD, FEP and PD datasets, with regional grey matter volume as an
additional covariate.

Also, to test whether the results were sensitive to the choice of
regions used to calculate the SIME VND, we reran the SIME analyses
on a larger set of thirteen regions for the datasets acquired at KI
(FEP and PD). The ANOVA was repeated on those VND estimates,
resulting in the same conclusions as for the original eight regions.

Throughout all statistical analyses, an α-level of 0.05 was used. The
reported p-values have not been corrected for multiple comparisons.



8
R E S U LT S A N D D I S C U S S I O N

[11C]PBR28 VT has frequently been used as a direct measure of TSPO
expression. This requires the assumption that any within-subject change
or between-group difference in VT arises exclusively from differences
in the signal from specific binding to TSPO.

Globally uniform and unaltered nondisplaceable signal is one of
the central assumptions in PET kinetic modeling. In the traditional
compartment models the contributions from nondisplaceable and spe-
cific uptake cannot be reliably disentangled. Thus, the use of total
binding as a proxy for specific binding, has been natural, given the
limitations of the models. Still, very little research has been done to
confirm that this substitute of outcome measures is valid.

With SIME, it is now possible to reliably estimate VND from a sin-
gle PET scan. In paper I, we applied SIME to four different [11C]PBR28
datasets to investigate whether the assumption that between-group
differences in [11C]PBR28 VT can be attributed exclusively to changes
in TSPO expression is a valid one.

We found significant between-group differences in VND in two of
the datasets. In this chapter, all results from Paper I are presented
and discussed. Figures presenting the main findings can be found
in the published manuscript (Appendix A). Here, the main findings
are presented in tables, and figures are reserved for not previously
published results.

8.1 lipopolysaccharide challenge

In the first dataset, eight young males were scanned twice, before
and after LPS administration. LPS is a toxin, and has previously been
shown to result in higher signals with TSPO PET tracers in several
different species, including mouse, rat, pig and non-human primates
(de Lange et al., 2018; Dickens et al., 2014; Hillmer et al., 2017b; Vignal
et al., 2018).

As expected, the mean VT values were significantly increased fol-
lowing the LPS intervention. The SIME-VNDs on the other hand, ap-
peared to be unaffected by the toxin. By subtracting the nondisplace-
able signal, the effect of the intervention becomes even more evident.
Although the coefficients of variation were not different between VT

and VS, there was a much higher mean percentage change from pre-
to post-LPS in VS compared to VT . In frontal cortex, for example, the
mean difference in VT was 46% (P=0.0012), while the mean difference
in VS was 66% (P=0.00026). Mean percentage differences for all three
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Frontal cortex Cerebellum

VT
46% 40%

P = 0.0012 P = 0.016

VS
66% 59%

P = 0.00026 P = 0.0052

VND
15%

P = 0.38

Table 2: Mean percentage difference in outcome measures between pre- and
post-LPS scans. Positive values indicate that outcome measures are
higher post-LPS. p-values (P) have not been corrected for multiple
comparisons.
LPS = lipopolysaccharide; VT = total distribution volume; VS = spe-
cific distribution volume; VND = nondisplaceable distribution vol-
ume.

parameters, in frontal cortex and cerebellum, are presented in Table
2.

While these findings might seem unsurprising, they are very im-
portant. It has previously been demonstrated in simulations that high
specific binding does not spill over and result in artificial overestima-
tion of SIME-VND (Plavén-Sigray et al., 2019). With this dataset, we
are able to demonstrate clearly, on real human data, that SIME can
provide VND values that are uncorrelated with VS.

Using the LPS dataset, we attempted to get an alternative estimate
of VND by applying a modified variant of the Lassen plot. The ratio-
nale was that, by plotting the regional differences in VT between pre-
and post-LPS against the corresponding pre-LPS VT s, similar to the
Lassen plot, the x-intercept should reflect the VND. This approach did
not result in reasonable VND estimates, and very poor R2 values were
observed when performing the linear fit. Although this could result
from a number of reasons, a plausible explanation could be that the
effect of LPS is not uniform throughout the brain, which would be a
required assumption for this method to be meaningful.

8.2 effect of diagnosis

In the AUD dataset, all parameter values were on average lower for
the AUD subjects compared to their controls. The results for this
dataset is presented in Table 3. SIME revealed that the between-group
difference in VT seems to be mainly driven by VND (−34%, P=0.00084).
A sizable but insignificant difference remains in VS, especially in
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frontal cortex where VS was, on average, 19% lower in the AUD sub-
jects compared to their matched controls (P=0.065).

The group effect on VND is very pronounced. However, the reason
for this effect is not immediately obvious. One possible explanation
is differences in brain tissue composition and condition. Prolonged
abuse of alcohol is known to have degenerative effects on the brain
(de la Monte and Kril, 2014). Rerunning the statistical analyses with
gray matter volume as a covariate did not change the outcomes, sug-
gesting that the lower VND of the AUD subjects is not caused by
partial volume effects. However, this does not necessarily exclude the
possibility that the difference is caused by excessive white matter atro-
phy in the AUD group. Significant age effects on VT have previously
been shown with several TSPO PET tracers, including [11C]PBR28
(Guo et al., 2013; Kumar et al., 2012; Tuisku et al., 2019).

The trend-level group difference in frontal cortex VS leaves the
question regarding AUDs potential effect on TSPO expression fairly
open. Previous TSPO PET studies on AUD have not been entirely con-
clusive. In animals, TSPO PET and autoradiography have generally
show either no difference or higher TSPO binding in alcohol exposed
animals (Kim et al., 2018; Saba et al., 2018; Tournier et al., 2021; Tyler
et al., 2019). In humans, one study has found significantly lower hip-
pocampal [11C]PBR28 VT in alcohol dependent subjects compared to
controls (Kalk et al., 2017). However, VT s were not significantly dif-
ferent in four other brain regions. In another study, MAB AUDs had
significantly lower VT s than MAB controls, but the same was not seen
in HABs (Kim et al., 2018). Our findings offer a possible explanation
for this. If the VT difference is indeed driven by reduced VND, it
should be easier to detect in MABs, as the VND represents a higher
fraction of the total signal in this group.

In the FEP dataset we saw no evidence of different VND between
patients and controls (14%, P=0.30). The FEP results are presented in
Table 4. In frontal cortex, there was a statistically significant differ-
ence in both VT (−36%, P=0.045) and VS (−57%, P=0.033), while in
cerebellum, p-values just above the α-level were observed for both
VT (−32%, P=0.060) and VS (−44%, P=0.054). Although the same out-
come is reached with both VT and VS again, like in the LPS dataset,
the mean percentage separation between groups is much higher for
VS in both regions.

The question regarding neuroinflammation as quantified by TSPO
PET in psychosis has been a polarizing one. Several attempts to quan-
tify a potential inflammatory response in psychosis using TSPO PET
have led to widely different conclusions. As of 2020, at least 14 orig-
inal studies comparing TSPO PET outcomes between psychosis pa-
tients and controls had been published (De Picker and Morrens, 2020).
In these studies, both methodological and demographic aspects of the
study designs were widely varying, complicating the direct compari-
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Frontal cortex Cerebellum

VT
−23% −18%

P = 0.0048 P = 0.012

VS
−19% −13%

P = 0.065 P = 0.15

VND
−34%

P = 0.00084

Table 3: Mean percentage difference in outcome measures between AUD
subjects and their matched controls. Negative values indicate that
outcome measures are lower for AUD compared to controls. p-
values (P) have not been corrected for multiple comparisons.
AUD = alcohol use disorder; VT = total distribution volume; VS =
specific distribution volume; VND = nondisplaceable distribution
volume.

son of studies. Two meta-analyses have been published on the topic,
each reaching a different conclusion (Marques et al., 2019; Plavén-
Sigray et al., 2018b).

Since the publication of Paper I, a study has been published where
SIME was used to calculate [11C]PBR28 VND in schizophrenia (Mar-
ques et al., 2021). While that study did not include a control group,
the SIME VND values obtained in that population was very well
aligned with the FEP subjects included in Paper I. They also used
pharmacological competition to estimate VND with the Lassen plot,
and obtained near-identical mean VND to one that has previously
been reported for healthy controls using the same approach (Marques
et al., 2021; Owen et al., 2014).

In the PD dataset we observed a clear between-group difference in
VND (−34%, P=0.0032), but no apparent effect on VT or VS, in either
striatum or cerebellum (see Table 5). Like with AUD and psychosis,
previous TSPO PET studies in PD have yielded mixed results. In stud-
ies using second generation TSPO tracers there is a tendency that no
effect is seen when VT is the reported outcome measure, while stud-
ies using ratio-based outcomes find higher binding in PD compared
to controls (Ghadery et al., 2017; Koshimori et al., 2015; Lavisse et al.,
2021; Terada et al., 2016). Given our finding of lower VND in PD, it
is possible that the previous reports of higher ratio-based outcome
measures in PD have in fact been driven by lower nondisplaceable
concentrations rather than higher specific binding to TSPO. The lower
nondisplaceable uptake we observed in PD does not necessarily ex-
clude the possibility that specific binding is simultaneously higher.
However, our results present no convincing evidence that this should
be the case (for VS P=0.11 in cerebellum, and P=0.42 in striatum).
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Frontal cortex Cerebellum

VT
−36% −32%

P = 0.045 P = 0.060

VS
−57% −44%

P = 0.033 P = 0.054

VND
14%

P = 0.30

Table 4: Mean percentage difference in outcome measures between FEP sub-
jects and their matched controls. Negative values indicate that out-
come measures are lower for FEP compared to controls. p-values
(P) have not been corrected for multiple comparisons.
FEP = first episode psychosis; VT = total distribution volume; VS

= specific distribution volume; VND = nondisplaceable distribution
volume.

We saw clear between-group differences in VND in two of the three
included clinical datasets; VND was significantly lower for AUD and
PD, but not for FEP. Like AUD, PD is also associated with accelerated
brain tissue atrophy (Gao et al., 2017). However, again, including gray
matter volume in the statistical analyses did not change the outcomes.
Although schizophrenia by some is viewed as a neurodegenerative
disorder, it does not belong to the same category as PD or AUD. Both
PD and AUD are associated with reduced cerebral perfusion (Du-
razzo et al., 2010; Saeed, Lang, and Masellis, 2020). However, it has
been shown in a simultaneous [11C]PBR28 PET/MR study, that nei-
ther [11C]PBR28 SUV nor SUVR are correlated with cerebral blood
flow (Sander et al., 2021). Consequently, the underlying reasons for
the observed group differences in the AUD and PD datasets remain
unclear.

8.3 effect of genotype

A significant effect of genotype on VND was seen in the FEP and
PD datasets, but not in the LPS and AUD datasets. Note that there
is an overlap in the latter two, with five out of eight LPS baseline
scans used as controls in the AUD study. The apparent genotype ef-
fect is difficult to conceptualize. The only difference between HABs
and MABs is the molecular structure of their TSPO, and it is unclear
how this could translate to a difference in VND. Because the differ-
ence is in the same direction as the expected difference in VS (HABs
higher than MABs), a tempting theory could be a spill-over effect
from the specific compartment. However, this theory is not in line
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Striatum Cerebellum

VT
7.1% 2.2%

P = 0.32 P = 0.74

VS
7.0% 15%

P = 0.42 P = 0.11

VND
−34%

P = 0.0032

Table 5: Mean percentage difference in outcome measures between PD sub-
jects and their matched controls. Negative values indicate that out-
come measures are lower for PD compared to controls. p-values (P)
have not been corrected for multiple comparisons.
PD = alcohol use disorder; VT = total distribution volume; VS =
specific distribution volume; VND = nondisplaceable distribution
volume.

with the results of the LPS experiment, where VND was unaffected
by the increase in VS.

When all controls were pooled in one analysis the genotype-effect
on VND was clear (P = 0.00016). However, when analyzing the con-
trols from each PET centre separately, it was only evident in the
datasets collected at KI. For the Yale controls there was no significant
effect of genotype on VND. This data is presented in Figure 2. There
are some key differences in the demographics of the two control pop-
ulations. Most notably the KI controls span a much wider age range
(20 – 72 years) compared to the Yale controls (19 – 55 years). Also,
there is a slightly higher fraction of females among the KI controls (9
out of 31) than among to the Yale controls (4 out of 18). It has previ-
ously been shown that there is a sex effect on [11C]PBR28 VT , with
higher VT among females (Tuisku et al., 2019). This does not explain
our results, as we see on average lower VND in the KI MABs than in
the Yale MABs (see Figure 2).

Another difference between the datasets is scan duration. All scans
from the Yale PET Centre had a duration of 120 min, while the scans
conducted at KI ranged from 72 to 90 min. It is not entirely clear how
a shorter scan duration would lead to differences in VND between
HABs and MABs. However, this presents a potential avenue for fur-
ther investigations. Rerunning the analyses on shortened versions of
the 120-min TACs could give insight into how the SIME-VND esti-
mates are affected by scan duration, and whether potential effects are
different across genotypes.

If there is truly a genotype effect on VND, shedding light on the
underlying causes could aid in understanding how and when nondis-
placeable binding may have confounding effects. Currently, we have
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no experimental evidence on the underlying causes, and we do not
know whether they are biological or mathematical.

Figure 2: SIME VND estimates for all controls scanned at KI (orange) and
Yale (green).
SIME = Simultaneous estimation of VND; HAB = high-affinity
binder; MAB = mixed-affinity binder.

Irrespective of cause, this finding emphasises the importance of
balancing datasets with regards to genotype. All datasets used in this
study were relatively well-balanced, and genotype was accounted for
in the statistical analyses.

Previously, polymorphism plots have been used to estimate VND

from TSPO PET data (Guo et al., 2013). The polymorphism plot is
conceptually similar to the Lassen plot. The rationale is that by plot-
ting the differences in regional VT s between HABs and MABs against
the HAB VT s, and fitting a line through the points, the x-intercept
should be an estimate of VND. This method relies on the assumption
that VND is constant across genotypes. Consequently, if there is in-
deed a genotype effect on VND, the ploymorphism plot is not a valid
approach for estimation of VND.

Although the questions regarding the validity of the polymorphism
plot remain unanswered, we have performed this analysis for the
AUD, FEP and PD datasets, and found that the polymorphism plot
VND is close to SIME VND. The mean SIME VND for each dataset
falls within the 95% confidence interval of the polymorphism plot
x-intercepts. However, these intervals were quite broad. To illustrate
this point, the polymorphism plot for the PD dataset is presented in
figure 3. This was the dataset where a polymorphism plot gave the
best fit to the data with a R2 of 0.97 (R2 was 0.42 for the AUD dataset
and 0.90 for the FEP dataset).
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Figure 3: Polymorphism plot for the PD data. The solid black line is the fit
through the datapoints, and the dashed blue lines illustrate the 95
% confidence interval of the fit. The mean SIME VND estimate in
the dataset is indicated by an arrow.
PD = Parkinson’s Disease; SIME = Simultaneous estimation of
VND; HAB = high-affinity binder; MAB = mixed-affinity binder.

8.4 the sime method

SIME is a relatively new method, and is not yet fully established in the
field. For the case of [11C]PBR28 , it has been tested using simulations,
blocking data, and test-retest data (Plavén-Sigray et al., 2019). SIME
was concluded to be a useful method for estimation of VND. Still,
further studies are warranted to establish the observed differences in
VND. Pharmacokinetic competition studies could be used to confirm
and quantify the between-group differences in VND that we saw in
AUD and PD.

Currently, there is no validated procedure for selection of ROIs to
include in the SIME analyses. The presented results were based on
TACs from eight different ROIs. Rerunning the analyses on data from
thirteen ROIs did not change the outcomes.

We initially did not weight the contributions from the different
ROIs differently. Later, the SIME analyses were repeated with size-
based ROI weights on all four datasets. Specifically, the contribution
of each ROI was weighted by the relative ROI volume, compared to
the largest included ROI. Differently weighting the contribution from
each ROI did not change the outcome of the analyses.

SIME, as a variant of the 2TCM, relies on an AIF. Accurately defin-
ing the true input function is challenging in general, but especially so
for TSPO ligands. The [11C]PBR28 AIF shape depends on genotype
(Plavén-Sigray et al., 2019), and it has previously been shown that
SIME VND estimates are affected by AIF shape (Schain et al., 2017).



Part V

PA P E R I I

It is the time you have wasted for your rose that makes
your rose so important.

— Antoine de Saint-Exupéry,
The Little Prince
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M E T H O D S

9.1 simulation of data

In Paper II, simulations were used to assess different study designs
for a PET baseline-block experiment, and different methods for ana-
lyzing the results from that type of study. For this purpose, we sim-
ulated VT values with realistic and unique noise. The simulations
were based on a [11C]Cimbi-36 dataset, where healthy controls were
scanned before and after a placebo intervention (da Cunha-Bang et
al., 2019).

Throughout all simulations, the true underlying values for the key
drug interaction parameters ∆max (maximal attainable occupancy)
and IC50 (half-maximal inhibitory concentration) were kept constant,
at 85% and 2µg/mg, respectively. The choice of these values was
loosely based on the in vivo ∆max and IC50 of psilocin binding to
the serotonin 2A receptor, which has been estimated to be 76.7% and
1.95µg/L in a [11C]Cimbi-36 baseline-block experiment in healthy hu-
mans (Madsen et al., 2019).

In three different simulation experiments, some key aspects of the
study design were altered, to see how the estimation of IC50 was
affected. Those were:

1 the range of occupancies in the dataset

2 the number of subjects in the dataset

3 the level of noise in the plasma drug concentration measure-
ments

In all experiments, 1000 unique datasets were simulated for each con-
dition.

9.1.1 Simulation Experiment 1

The design of simulation experiment 1 is illustrated in Table 6. We
investigated the effect of the range of occupancies by simulating six
different datasets with increasing dose range and increasing numbers
of subjects. The first simulated dataset had five subjects, each receiv-
ing doses corresponding to occupancies evenly distributed between
53.3% and 80%. In the next simulation, a sixth subject, receiving a
dose corresponding to 46.7% occupancy, was added. In each consec-
utive simulation, an additional subject with a dose corresponding to

55
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n included occupancies [%]

5 53.3, 60.0, 66.7, 73.3, 80.0

6 46.7, 53.3, 60.0, 66.7, 73.3, 80.0

7 40.0, 46.7, 53.3, 60.0, 66.7, 73.3, 80.0

8 33.3, 40.0, 46.7, 53.3, 60.0, 66.7, 73.3, 80.0

9 26.7, 33.3, 40.0, 46.7, 53.3, 60.0, 66.7, 73.3, 80.0

10 20.0, 26.7, 33.3, 40.0, 46.7, 53.3, 60.0, 66.7, 73.3, 80.0

Table 6: Design of simulation experiment 1. The table shows, for each of
the six simulated datasets in simulation experiment 1, the number
of included subjects (N), and the block-scan occupancies for those
subjects.

6.7% occupancy lower than the lowest occupancy in the previous sim-
ulation was added. Thus, in the sixth and final simulation, 10 sub-
jects received doses corresponding to occupancies ranging from 20%
to 80%.

9.1.2 Simulation Experiment 2

In the second experiment, datasets with increasing numbers of sub-
jects were simulated. A dose range corresponding to 40 − 80% oc-
cupancy was chosen, based on the results from the first experiment.
In each simulation, subjects were administered doses corresponding
to occupancies evenly distributed within this range. The sample size
was increased from 5 to 25 in steps of one, and further up to 45 in
steps of five.

9.1.3 Simulation Experiment 3

In the third experiment, we investigated the effect of noise in the
measurements of plasma drug concentration (CP). In the previous ex-
periments, CP was considered without noise. In this experiment, the
CP estimates (ĈP) were sampled from a normal distribution where
the mean was the true CP, and the standard deviation was the true
CP multiplied by a noise factor κ:

ĈP ∼ N(CP, κCP). (12)

κ was increased from 0 to 1, in steps of 0.1, for a total of eleven
different evaluated noise levels. All simulated datasets included 10

subjects, and a dose range corresponding to 40− 80% occupancy was
used.
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9.1.4 Fixing True Parameter Values

True VT values in seven regions were hard-coded for ten separate
subjects. Those seven regions were thalamus, insula, anterior cingu-
late cortex, posterior cingulate cortex, orbitofrontal cortex, occipital
cortex, and cerebellum. Cerebellum-VT was used only as an estimate
of brain-wide VND for each subject (Ettrup et al., 2014), so that for
the other regions, the true underlying VS would be the difference
between VT in that region and VT in cerebellum.

The hardcoded VT values were chosen based on seven healthy sub-
jects, scanned with [11C]Cimbi-36 before and after a placebo inter-
vention (da Cunha-Bang et al., 2019). This dataset originally included
eight subjects, but one was excluded from this study, due to missing
frames in one of the scans. First, for each of the seven subjects, the
true VT in each region of interest (ROI) was defined as the mean of
the two scans. For each ROI, those seven VT s were combined, and
used to calculate the mean and standard deviation of VT in each ROI.
Then, ten ground truth VT values were defined for each ROI, so that
they, when combined, resulted in the same mean and standard devia-
tion as the previously defined true VT s in the da Cunha-Bang dataset.
Finally, the hard-coded VT values were assigned to ten simulated sub-
jects in an ascending fashion, so that the relative magnitude of each
subject’s VT values was consistent across regions. All hard-coded VT s
are listed in Table 7.

As mentioned, true values for ∆max and IC50 were kept constant,
at 85% and 2µg/L, throughout all simulations. For each target occu-
pancy (∆), the corresponding CPs were calculated from these values,
by rearranging the Emax model as,

CP =
IC50 ·∆
∆max −∆

. (13)

9.1.5 Applying Unique and Realistic Noise to the Data

To simulate VT values with realistic noise properties, an estimate of
the covariance structure of VT in the selected ROIs was produced.
This calculation was based on the same seven subjects, with pre-
and post placebo intervention scans, as the ground truth values (da
Cunha-Bang et al., 2019). Regional VT s for both scans were calculated
using the 2TCM with AIF. It was assumed that the placebo had no, or
negligible, effect on the VT estimates, and the dataset was treated as
a test-retest. The 6× 6 covariance matrix, Σ, describing the covariance
of VT values across the six regions was estimated as,

Σ = cov
(
V test
T −V retest

T

)
. (14)

Where V test
T and V retest

T are 6× 7 matrices of VT estimates across
6 ROIs (those listed in Table 7) for 7 subjects.
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tha ins acc pcc orb occ VND

11.0 27.0 30.0 24.0 27.0 24.0 8.5

13.0 29.0 33.0 27.0 31.0 27.0 9.5

15.0 31.0 34.0 30.0 35.0 29.0 10.5

17.0 34.0 37.0 31.0 38.5 31.0 12.0

18.0 36.0 38.0 34.0 39.5 33.0 12.5

19.0 37.0 38.5 36.0 40.0 34.0 13.0

20.0 40.0 39.5 39.0 41.0 36.0 14.0

22.0 43.0 42.5 40.0 44.5 38.0 15.0

24.0 45.0 43.5 43.0 48.5 41.0 16.0

25.0 47.0 46.0 45.0 52.5 43.0 17.0

Table 7: Hard-coded VT values for 10 subjects, in thalamus (THA), Insula
(INS), anterior cingulate cortex (ACC), posterior cingulate cortex
(PCC), orbitofrontal cortex (ORB), occipital cortex (OCC), and cere-
bellum (VND).

Subsequently, the covariance matrix, Σ, was used to apply noise
with a realistic covariance structure to the simulated data. Cholesky
decomposition of the covariance matrix results in an upper triangular
matrix Γ T , consistent with Σ = Γ TΓ . To ensure random noise, a
6× 1000 matrix, B, was filled with random numbers sampled from a
unit normal distribution (mean = 0, standard deviation = 1). Γ TB is
then a 6× 1000 matrix with covariance Σ. By adding each column in
Γ TB to a 6× 1 matrix of hard coded VT values, 1000 unique datasets,
each with a covariance structure defined by Σ is generated.

To ensure realistic proportions of the added noise, all rows in Γ TB

were scaled by multiplication with Vtrue
T ,k /34, where Vtrue

T ,k is the hard-
coded true value for VT in region k. Across all regions and scans in
the placebo intervention dataset 34 was the mean VT value.

9.1.6 Simulating Baseline-Block Data

To define the true VT values for a baseline-block experiment, N sub-
jects were chosen, by simple random sampling without replacement,
from the ten hard-coded subjects in Table 7. For experiments with
N > 10, all predefined subjects were included once, and subsequent
subjects were sampled from the same 10. For N > 20, N > 30 and
N > 40, all subjects were included 2, 3, and 4 times before randomly
sampling remaining subjects. N CPs corresponding to the desired oc-
cupancies were calculated according to Equation 13, and randomly
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assigned to the N subjects. For each subject, the true baseline and
block VT s were defined as,




V base
T ,true = VND1+VS

V block
T ,true = VND1+

(
1−∆max

CP

CP+IC50

)
VS ,

(15)

where V base
T ,true and V block

T ,true are 6× 1 vectors of true VT values, VND

is the true cerebellum VT for the subject, and VS is a 6× 1 vector of
true VS values for the subject, calculated as the difference between
the true VT and VND for each ROI.

Then, 1000 unique instances of each subject were generated by
adding noise to V base

T ,true and V block
T ,true as in described in section 9.1.5.

9.1.7 Simulating Test-Retest Data for Estimation of Covariance Structure

For each simulated baseline-block dataset, a unique test-retest dataset,
was simulated, and used for estimation of a covariance matrix. All
simulated test-retest datasets consisted of ten subjects. The same ten
hard-coded subjects presented in Table 7 were used for this purpose.
Noise was added to the ten subjects as described in section 9.1.5.

Using each simulated dataset of ten test and retest VT s, a covariance
matrix, Σ̂, was estimated by nonlinear shrinkage (Ledoit and Wolf,
2015; Schain, Zanderigo, and Ogden, 2018).

9.2 analysis of baseline-block data

We compared three different approaches to estimate ∆max and IC50

from a PET baseline-block dataset:

i Lassen plot applied to regional VT values to obtain occupancy
estimates, followed by fitting the dose-occupancy data to the
Emax model

ii Likelihood Estimation of Occupancy to obtain occupancy esti-
mates, followed by dose-occupancy plot, followed by fitting the
dose-occupancy data to the Emax model

iii Likelihood Estimation of Affinity

All three approaches were applied to all simulated data. Approach
(i) is the established method for estimation of drug interaction pa-
rameters from VT values. Approach (ii) is a relatively recent addition
to the field, that has already been shown to improve occupancy esti-
mation (Naganawa et al., 2019; Schain, Zanderigo, and Ogden, 2018).
Approach (iii) was developed for this paper, and introduced and eval-
uated for the first time.

All analyses were done in MATLAB (version 9.10; MathWorks).
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9.2.1 The Lassen Plot

The theoretical framework for the Lassen plot is explained in Section
4.3.1. We used the Cunningham formulation of the Lassen plot, pre-
sented in Equation 7 (Cunningham et al., 2010). For each simulated
subject, we fitted the Lassen plot equation to the regional VT s. In the
fitting procedure, VND was constrained to be positive, and ∆ was
constrained to be between 0 and 1.

9.2.2 Likelihood Estimation of Occupancy

Likelihood Estimation of Occupancy (LEO) is a maximum likelihood-
based approach for estimation of VND and occupancy, based on the
same key assumptions as the Lassen plot (Schain, Zanderigo, and
Ogden, 2018). The method is outlined in Section 4.3.2.

For each simulated subject, the Matlab function fminsearch was
used to find the minimum of of the negative LEO log-likelihood func-
tion (Equation 9), with VND constrained to be positive, and ∆ con-
strained to be between 0 and 1.

9.2.3 Dose-Occupancy Plot

The dose-occupancy portion of the data was both simulated and
solved using the Emax model (Equation 11). For each simulated data-
set, the simulated plasma drug concentration measurements and esti-
mated occupancies (from Lassen plot or LEO), were fitted to Equation
11 using nonlinear curve fitting (lsqcurvefit in Matlab). IC50 was con-
strained to be positive, and ∆max was constrained to be between 0

and 1.

9.2.4 Likelihood Estimation of Affinity

In Paper II, we introduced Likelihood Estimation of Affinity (LEA),
a maximum likelihood-based estimator for calculation of drug inter-
action parameters from a PET baseline-block dataset with multiple
subjects. LEA is based on LEO, in combination with the Emax model
(Equation 11). Similar to LEO, it uses the regional VT values as in-
put. In addition, it also uses each subject’s CP as input. However, the
method only accounts for the errors in the VT estimates, and not for
those in the CP estimates. For the VT estimates, LEA assumes, like
LEO, that they are normally distributed, and that the variance is the
same in both the baseline and block scans (see Equation 8).

LEA assumes, like the Emax model, that all subjects in the dataset
share one global IC50 and one global ∆max.
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The data from all subjects in a baseline-block dataset are combined
into one log-likelihood function. The LEA log-likelihood function for
a dataset with N subjects is given by,

l(IC50,∆max,VND,1,VND,2, ...,VND,N, VS,1, VS,2, ..., VS,N |

Vbaseline
T,1 , Vbaseline

T,2 , ..., Vbaseline
T,2 , ...Vbaseline

T,N , Vblock
T,1 , Vblock

T,2 , ..., Vblock
T,N ,

CP,1,CP,2, ...,CP,N)

=

N∑

j=1

[(
Vbaseline

T,j −
(
VND,j1+ VS,j

))T
Σ−1

(
Vbaseline

T,j −
(
VND,j1+ VS,j

))

+

(
Vblock

T,j −

(
VND,j1+

(
1−∆max

CP,j

CP,j + IC50

)
VS,j

))T

Σ−1

(
Vblock

T,j −

(
VND,j1+

(
1−∆max

CP,j

CP,j + IC50

)
VS,j

))]
.

(16)

VND,j is the estimated VND for subject j. Vbaseline
T,j and Vblock

T,j are k× 1

arrays of k baseline and block VT values for subject j. CP,j is the
block-scan plasma drug concentration for subject j. Σ is the covariance
matrix of the regional VT values.

Similar to LEO, the dimensionality of the log-likelihood function
can be reduced by solving ∂

∂VS,j
l = 0, which yields the following

expression for VS,j:

VS,j =
Vbaseline

T,j − VND,j1+
(
1−∆max

CP,j
CP,j+IC50

)(
Vblock

T,j − VND,j1
)

1+
(
1−∆max

CP,j
CP,j+IC50

)2
.

(17)

As a result, the log-likelihood function is just a function of IC50,
∆max, and each subjects VND, giving a dimensionality of N+ 2 for
N subjects.

The full derivation of the LEA log-likelihood function is presented
in Appendix D. The log-likelihood function presented in Equation 16
uses data from one baseline and one block scan per subject. However,
the function can easily be extended to account for several block scans
per subject.

For each simulated subject, the Matlab function fminsearch was
used to find the minimum of of the negative LEA log-likelihood func-
tion, with IC50 and VND constrained to be positive, and ∆max con-
strained to be between 0 and 1.

9.2.5 Comparison of Parameter Estimates

In Paper II, box plots of parameter estimates were used to compare
the IC50 estimates from the three different methods. Here, in the the-
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sis, the median estimates and interquartile ranges (75th - 25th per-
centiles) for both the IC50 and ∆max estimates are presented in ta-
bles.

Throughout this project the emphasis was on estimation of IC50,
as that was deemed the most interesting parameter. In many dose-
occupancy studies a one-parameter Emax model is employed, where
∆max is constrained to be 100%.
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R E S U LT S A N D D I S C U S S I O N

In Paper II we evaluated different study designs and data analysis
methods for PET baseline-block studies. The main outcome measure
was IC50, and box plots illustrating the distribution of IC50 estimates
can be found in Paper II (Appendix B).

In this chapter, results are presented in tables of the median and in-
terquartile range of parameter estimates. In the Paper II figures, only
the results for IC50 were reported. Here, both IC50 and ∆max esti-
mates are presented. The true underlying values in the simulations
were 2 µg/L for IC50, and 85% for ∆max.

10.1 occupancy range

In the first simulation experiment we investigated the contribution of
low-occupancy datapoints on the estimation of IC50. The median pa-
rameter estimates and interquartile ranges for both IC50 and ∆max,
estimated with all three methods are presented in Table 8. The first
additional datapoint (∆ = 46.7%) clearly improved the estimation
of both parameters with all three methods. However, when the sub-
sequent datapoints were added, no obvious improvements were ob-
served.

The results suggest that collecting data at these lower occupancies
makes little economical sense. Realistically, most people would prob-
ably want to collect some lower-occupancy datapoints to confirm that
the assumed model aligns with the in vivo kinetics of the drug. How-
ever, it seems that such datapoints would likely not contribute to the
accurate characterization of the dose-occupancy relationship.

Here, the simulations are based on [11C]Cimbi-36. It is possible
that with another radiotracer, with less noise, lower doses could con-
tribute more to the parameter estimation. Also, all methods evaluated
here estimates drug interaction parameters based on VT s. Generally,
BPND estimates have lower test-retest variability than VT estimates. It
is possible that BPND-based estimates would have allowed for lower
occupancies to contribute meaningfully to the IC50 and ∆max esti-
mates.

Still, lower doses also mean that accurate estimation of the plasma
drug concentrations is more challenging. This will always be an issue
with low-occupancy datapoints, irrespective of data collection and
quantification methods.

63
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Occupancy Lassen LEO LEA

range [%] [med(iqr)] [med(iqr)] [med(iqr)]

IC50

53.3-80.0 1.92(2.18) 1.92(1.09) 1.92(1.23)

46.7-80.0 1.87(1.51) 1.96(0.76) 1.93(0.76)

40.0-80.0 1.93(1.42) 1.99(0.81) 1.96(0.78)

33.3-80.0 1.83(1.37) 1.96(0.78) 1.93(0.75)

26.7-80.0 1.92(1.42) 1.98(0.74) 1.94(0.77)

20.0-80.0 1.90(1.40) 1.95(0.75) 1.92(0.73)

∆max

53.3-80.0 85.9(15.8) 85.5(8.98) 85.9(9.94)

46.7-80.0 85.2(12.7) 85.3(6.53) 85.3(6.38)

40.0-80.0 85.9(13.5) 85.7(6.78) 86.0(6.82)

33.3-80.0 84.4(12.8) 85.4(6.86) 85.7(6.71)

26.7-80.0 85.7(14.2) 85.9(7.62) 86.0(7.81)

20.0-80.0 85.5(13.8) 85.5(7.28) 85.6(7.11)

Table 8: Results of simulation experiment 1, where the effect of adding ad-
ditional datapoints at lower occupancies was evaluated. The true
underlying values in the simulations were 2 µg/L for IC50, and
85% for ∆max.
Lassen = Lassen plot followed by dose-occupancy plot; LEO = Like-
lihood estimation of occupancy followed by dose-occupancy plot;
LEA = Likelihood estimation of affinity; med = median; iqr = in-
terquartile range (difference between 75th and 25th percentiles);
IC50 = Half-maximal inhibitory concentration; ∆max = Maximal
attainable occupancy.
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10.2 number of subjects

In the second simulation experiment we investigated the effect of the
number of subjects in the dataset on the parameter estimation. For a
few of the evaluated sample sizes, median parameter estimates and
interquartile ranges, for all three methods, are presented in Table 9.

As expected, including more subjects generally led to more pre-
cise parameter estimation. We could see no clear cut-off after which
including more subjects did not discernibly improve parameter esti-
mation.

To better imitate a real life scenario, we also used the estimated
dose-occupancy relationships from this simulation experiment to eval-
uate how each method performed at determining the correct plasma
concentration corresponding to a target dose. We defined three differ-
ent therapeutic windows, 20-30%, 45-55%, and 70-80%. Then, for all
different sample sizes, and all three methods, we calculated the CP

that should correspond to the mid-point of each therapeutic window
according to each of the 1000 estimated dose-occupancy relationships.
In supplementary figure 1 of Paper II (Appendix B), the success rates
for each method across increasing sample sizes was plotted. Here, we
observed some ceiling effect, especially for LEO and LEA, where the
benefit of increasing the sample size flattened out after approximately
20 subjects. In general, nearly four times the number of subjects were
required for the Lassen plot to reach the same success rate as the
likelihood-based methods.

10.3 noise in plasma drug concentration measurements

In the third simulation experiment, we evaluated the effect of noise
in the measurements of plasma drug concentrations. The median pa-
rameter estimates and interquartile ranges, for some of the evaluated
noise levels, are presented in Table 10.

The error of the parameter estimates increased with increased noise
in the CP measurements. At moderate noise levels, there was a neg-
ative bias on both parameters with all three methods. At the highest
evaluated noise levels, there was a positive bias in the parameter es-
timates, although slightly less for LEA compared to the other two
methods.

It is unclear which of our simulated plasma noise factors (κ) best
match the typical errors in real-life measurements of plasma drug
concentrations. Based on literature (Pea et al., 2019), we believe that
it is likely in the range of 0.2 – 0.4. At these noise levels there is no
clear benefit of using LEA over LEO.

The noise in the plasma drug concentration measurements is not
accounted for in the LEA log-likelihood function. Ideally, we would
have wanted to develop a maximum likelihood based estimator that
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N Lassen LEO LEA

[med(iqr)] [med(iqr)] [med(iqr)]

IC50

5 1.92(1.66) 1.95(0.98) 1.93(0.98)

10 1.86(1.24) 1.94(0.66) 1.87(0.68)

15 1.94(1.16) 2.00(0.61) 1.94(0.60)

20 1.96(0.98) 1.99(0.52) 1.93(0.50)

25 1.98(0.87) 1.99(0.51) 1.93(0.48)

30 1.93(0.85) 1.97(0.42) 1.91(0.41)

∆max

5 85.3(14.6) 85.5(8.51) 85.5(8.45)

10 85.4(11.7) 85.1(6.39) 85.2(6.18)

15 85.6(11.3) 85.7(5.88) 85.7(5.75)

20 84.5(9.65) 85.6(4.80) 85.6(4.87)

25 85.4(8.33) 85.6(4.64) 85.6(4.83)

30 85.0(7.79) 85.5(3.91) 85.5(4.10)

Table 9: Results of simulation experiment 2, where the effect of adding ad-
ditional subjects was evaluated. The true underlying values in the
simulations were 2 µg/L for IC50, and 85% for ∆max.
N = number of subjects; Lassen = Lassen plot followed by dose-
occupancy plot; LEO = Likelihood estimation of occupancy fol-
lowed by dose-occupancy plot; LEA = Likelihood estimation of
affinity; med = median; iqr = interquartile range (difference between
75th and 25th percentiles); IC50 = Half-maximal inhibitory concen-
tration; ∆max = Maximal attainable occupancy.
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Lassen LEO LEA

[med(iqr)] [med(iqr)] [med(iqr)]

IC50

0 1.90(1.36) 1.97(0.73) 1.93(0.70)

0.3 1.49(1.31) 1.58(0.87) 1.59(0.87)

0.6 1.67(3.45) 1.52(3.23) 1.52(2.61)

0.9 4.75(10.6) 4.70(10.5) 3.41(5.99)

∆max

0 85.3(12.1) 85.6(6.53) 85.8(5.79)

0.3 81.6(12.9) 82.4(7.80) 82.9(7.86)

0.6 82.3(27.7) 80.3(25.5) 80.3(24.5)

0.9 93.3(28.6) 92.4(28.5) 88.0(26.9)

Table 10: Results of simulation experiment 3, where the effect of noise on
the plasma drug concentration measurements was evaluated. The
true underlying values in the simulations were 2 µg/L for IC50,
and 85% for ∆max.
κ = plasma noise factor; Lassen = Lassen plot followed by dose-
occupancy plot; LEO = Likelihood estimation of occupancy fol-
lowed by dose-occupancy plot; LEA = Likelihood estimation of
affinity; med = median; iqr = interquartile range (difference be-
tween 75th and 25th percentiles); IC50 = Half-maximal inhibitory
concentration; ∆max = Maximal attainable occupancy.

also accounts for this noise, but we were unable to identify a suitable
strategy for this. Estimating the true CPs from the measured values
would dramatically increase the dimensionality of the method. Also,
it is not entirely clear how to realistically characterize the noise. Un-
like VT , the noise in CP does not seem to be normally distributed (Pea
et al., 2019).

10.4 analytical methods

Throughout all three simulation experiments, the maximum likeli-
hood based methods, consistently outperformed the Lassen plot. The
differences between the LEO-and LEA-based parameter estimates were
minimal, but we observed a small tendency for LEO to estimate val-
ues closer to the true underlying values.

In the two first simulation experiments, the accuracy was compa-
rable across the three methods, with generally very similar median
parameter estimates. The precision was much higher with LEO and
LEA than with the Lassen plot. In simulation experiment 2, the in-
terquartile ranges of the LEO- and LEA-based IC50 estimates were
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similar to those that the Lassen plot achieved with four times the
number of subjects.

The maximum likelihood based methods rely on estimation of the
covariance structure of regional VT estimates. In this study, that was
estimated from a test-retest dataset with ten subjects. Without a good
estimate of the covariance structure, these methods would perform
comparably with the Lassen plot (Schain, Zanderigo, and Ogden,
2018). This is a clear limitation of these methods. Although test-retest
studies are a natural part of the evaluation of new PET tracers, it is
not given that such a dataset would be available for all tracers. Even
if an appropriate test-retest dataset exists for a tracer, it would not
necessarily be available for use.

Still, at the noise levels we have simulated here, it seems that collect-
ing 10 test-retest subjects and 5 baseline-block subjects and analyzing
the data with LEO or LEA, would yield more precise parameter es-
timates than collecting 15 baseline-block subjects and analyzing the
data with the Lassen plot.

Unfortunately, extending the existing likelihood based method did
not improve the parameter estimation, and the results obtained with
LEO and LEA were generally very similar. LEA did perform better
at very high levels of noise in CP. However, we believe that these
noise levels are unrealistically high. At the noise levels we expect to
be closer to reality, LEA performs comparably to LEO.

It is difficult to imagine that someone would prefer to use LEA over
LEO. Not only because it does not add precision to the parameter
estimates, but also because it represents an unrealistic study design.
The standard approach for collection of PET occupancy data is an
adaptive study design, where each drug dose is determined based on
the occupancies achieved in previous scans (Takano et al., 2016). As
such, the two step approach of first calculating occupancies with LEO
or the Lassen plot, and later pooling all the occupancy data makes
more sense.

Because the strength of the likelihood-based approaches lies in the
fact that they account for noise, the relative performance we have re-
ported in Paper II is naturally dependent on the magnitude of the
noise in the simulated data. We have done our best to add a realistic
level of noise to the VT values. Nevertheless, it is entirely possible that
we have simulated an excessive level of noise. If that is the case, the
outperformance of the Lassen plot by LEO and LEA reported here
would be exaggerated. Naturally, the noise in VT is a complex combi-
nation of several factors, and highly dependent on the radiotracer.
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PA P E R I I I

You become responsible, forever, for what you have
tamed.

— Antoine de Saint-Exupéry,
The Little Prince
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M E T H O D S

In Paper III, we present and evaluate a new model for arterial input
function (AIF) based quantification of data from a PET displacement
study. In this type of study, a competing drug is administered during
an ongoing PET-scan, with the intention of measuring the displace-
ment of the PET tracer by the drug.

11.1 kinetic models for pet displacement studies

In the classic baseline-block occupancy study design, the drug inter-
vention occurs between two separate PET scans. When the competing
drug is instead administered during an ongoing scan, the system is
dynamically altered during data collection. Thus, the kinetics of the
PET tracer can no longer be accurately modeled by a linear system.
Instead, a different type of model must be used, that accounts for the
changes to the system.

In the two-tissue compartment model (2TCM), the rate constant
k3 is linearly related to the concentration of available targets, Bavail

(Innis et al., 2007; Slifstein and Laruelle, 2001):

k3 = fNDkonBavail, (18)

where fND is the fraction of free radioligand in the nondisplaceable
compartment, and kon is the association rate constant for the radi-
oligand to its specific target. When a competing drug is introduced,
Bavail is fractionally reduced with the occupancy of the drug. Given
the linear relationship between Bavail and k3, it follows that as long
as fND and kon remains unchanged, the same fractional reduction
will also apply to k3. Thus, we assumed that following the interven-
tion k3 will fractionally decrease with the target occupancy. In our
model, we have also assumed that the other rate constants (K1,k2,
and k4) are unperturbed by the intervention. This model assump-
tions, of occupancy acting solely on k3, was also proposed by Endres
and Carson (1998).

Based on these assumptions we have developed two kinetic mod-
els for PET displacement studies, one based on the one-tissue com-
partment model (1TCM) and one based on the 2TCM. Only the 1TC
displacement model was evaluated in Paper III.

71
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11.1.1 The Occupancy Model

We modeled the occupancy as a function of time, ∂(t). The occupancy
was assumed to be zero before the time of the intervention (beginning
time, tb), then to increase up to some max value, ∂max, until time
te (end time), after which it was assumed to be constant at ∂max

throughout the rest of the scan.
We assumed that the occupancy function would be monotonically

non-decreasing between tb and te. We also needed the function to
be differentiable at all time points. A sigmoid-shaped function, devel-
oped for the prediction of crop growth rates, met our conditions (Yin
et al., 2003):

∂(t) = ∂max

(
1+

te − t

te − tm

)(
t− tb
te − tb

) te−tb
te−tm

. (19)

tm is some time point between tb and te, where the derivative of ∂(t)
is at its maximum. In order to limit the number of estimated param-
eters, tm was arbitrarily constrained to be the mid-point between tb
and te throughout this study. Thus, tm in Equation 19 can be replaced
with 1

2
(tb + te), yielding,

∂(t) = ∂max

(
1+ 2

te − t

te − tb

)(
t− tb
te − tb

)2

. (20)

Examples of ∂(t) with different te are illustrated in Figure 1 of
Paper III.

11.1.2 The One-Tissue Compartment Displacement Model

In our models, the occupancy function, ∂(t), acts on k3, a parameter
that is not part of the 1TCM. In order to allow occupancy to be es-
timated from a 1TC displacement model, we adopted a framework
similar to the simplified reference tissue model(SRTM; Lammertsma
and Hume (1996)). In the SRTM, the combined forward rate constant
k2a can be expressed in terms of the 2TCM rate constants as,

k2a =
k2

1+BPND
=

k2
1+ k3/k4

, (21)

where k2,k3, and k4 are the 2TCM rate constants. By replacing the
1TCM k2 in the 1TCM differential equation with the expression for
k2a in Equation 21, it is possible to incorporate a time-varying oc-
cupancy function acting on k3. The differential equation for the 1TC
displacement model then becomes,

dCT (t)

dt
= K1CP(t) −

k2
1+ (1− ∂(t))BPND

(22)
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11.1.3 The Two-Tissue Compartment Displacement Model

In the 2TC implementation of the displacement model, the occupancy
function, ∂(t) acts directly on k3. Thus, the differential equations for
the 2TC displacement model are:

dCND(t)

dt
= K1CP(t) − (k2 + (1− ∂(t)) k3)CND(t) + k4CS(t),

(23)
dCS(t)

dt
= (1− ∂(t)) k3CND(t) − k4CS(t). (24)

The 2TC version of the displacement model was not evaluated in
Paper III. However, a more detailed description of the model and its
proposed solutions can be found in Section A of the paper’s supple-
mentary material (Appendix C).

11.2 simulation of pet tacs with displacement

Data was simulated using the 1TC displacement model (see Section
11.1.2), and a AIF from one of the [11C]UCB-J pig displacement scans
(see Section 11.3). For the first eight minutes a smoothened version of
the pig AIF was used. For the remainder of the scan, a tri-exponential
function was fitted to the AIF, to allow for the scan duration to be
extended in simulations.

Time-activity curves (TAC) for seven regions of interest (ROI) were
simulated: cerebellum, frontal cortex, hippocampus, occipital cortex,
putamen, temporal cortex and thalamus. The rate constants were cho-
sen from published [11C]UCB-J rate constants, and chosen to result
in VND = 4 in all ROIs (Finnema et al., 2018).

Throughout all simulations, the time of intervention (tb) was set
to 60 min, and the scan duration was set to 120 min. Three different
drugs were simulated, one fast, one slow, and one very slow, with
max occupancy (∂max) reached at 65, 90 and 180 min, respectively.
For each drug, scans at three different occupancies were simulated,
with ∂max at 25%, 50% and 75% occupancy.

For each condition (combination of drug speed and occupancy),
1000 sets of 7 TACs were simulated.

All simulations were done in MATLAB (version 9.10; MathWorks).

11.2.1 Generation of Noise-Free Time-Activity Curves

The noise-free TACs for all conditions and ROIs were generated by
numerically solving the 1TC displacement model differential equa-
tion (Equation 22), using the Euler forward method, with [11C]UCB-J
based parameter values and pig AIF as outlined above.
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11.2.2 Adding Realistic Noise

A previously proposed noise model, that accounts for frame dura-
tion, radionuclide decay and activity concentration, was used to add
realistic noise to all frames of the simulated TACs (Logan et al., 2001;
Varga and Szabo, 2002). In frame j, the simulated noisy activity con-
centrations Cnoise(tj) was given by,

Cnoise(tj) = Ctrue(tj)


1+α

√
eλt

mid
j

Ctrue(tj)∆tj
G(0, 1)


 , (25)

where Ctrue(tj) is the simulated true activity concentration in frame
j, λ is the decay constant for 11C, tmid

j is the mid-time of frame j, ∆tj
is the frame duration of frame j, and G(0, 1) is a random number sam-
pled from a unit normal distribution (mean = 0, standard deviation
= 1). α is a scaling factor for the noise. It was set to 5 throughout all
simulations, in order to achieve a realistic magnitude of the noise.

11.3 pig displacement experiments

For evaluation of the displacement model on real data, [11C]UCB-J
PET intervention scans were conducted in six pig. All scans were ac-
quired on a HRRT scanner, with a scan duration of 150 min. After 60
min, brivaracetam was administered intravenously over 20 seconds,
at doses corresponding to 0.1, 0.2, 0.75, 1, 2, and 5 mg/kg body mass.
Two of the pigs (0.1 and 2 mg/kg), underwent 120-min baseline and
block scans immediately before and after the intervention scans. No
additional drug was given prior to the block scans. Arterial blood
was automatically (first 30 min) and manually (14 samples) collected
during all scans, for estimation of AIFs.

For estimation of plasma brivaracetam concentrations, seven arte-
rial samples were collected during the intervention scans (at approxi-
mately 1, 5, 15, 30, 45, 60 and 90 min after the intervention), and five
samples were collected during the block scans (at approximately 3,
15, 45, 75 and 90 min after radioligand injection).

More details on the pig data acquisition and processing can be
found in Paper III and its supplementary material.

11.4 analysis of pet displacement scans

The 1TC displacement model was fitted to all TACs, both simulated
and pig data, using both a numerical and an analytical approach.
With both methods, all TACs from a single scan were fitted simul-
taneously using a nested approach, where global parameters were
fitted in an outer layer, and ROI-specific parameters were fitted in
an inner layer. Simultaneous fitting of regions is a necessary to iden-
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tify a global minimum, because the free parameters k2, BPND and
∂(t), only appear as a ratio in the 1TC displacement model differen-
tial equation. This is explained in greater detail in the supplementary
material of Paper III.

∂max, VND, and te were assumed to be the same in all ROIs. ∂max

was constrained to be between 0 and 1, VND was constrained to be
positive, and te was constrained to be after tb. The time of interven-
tion, tb, was also assumed to be the same in all ROIs. This parameter,
was not fitted, but assumed to be known. For the simulated data, the
true tb from the simulations was used. For the pig data, tb was set to
the start of the brivaracetam injection.

K1, VS and the fractional blood volume, vB, were estimated sepa-
rately for each ROI. In the fitting, K1 and VS were constrained to be
positive, and vB was constrained to be between 0 and 1.

For both the simulated data and the pig data the same seven ROIs
were used: cerebellum, frontal cortex, hippocampus, occipital cortex,
putamen, temporal cortex and thalamus.

All analyses were done in Matlab (version 9.10). Both the inner-
layer and outer-layer fits, with both the numerical and analytical ap-
proaches, were fitted using the Matlab function lsqnonlin.

11.4.1 The Numerical Solution

The displacement model was fitted numerically to the data using
the Euler forward method. Euler forward is a first-order numerical
method for solving ordinary differential equations. Starting at known
initial conditions, the next data point is estimated by taking a small
step according to the curve’s tangent at that point. In this manner,
TACs based on a set of parameter estimates can be drawn. In the
fitting, the combination of parameter estimates that yields the most
similar curves to the subject’s TACs is identified.

For the numerical solution a fixed step size of 0.5 seconds was used.

11.4.2 The Single Step Approximation

Because the displacement models describe a time-invariant system
the analytical methods used to solve classic PET compartment model
differential equations (e. g. the Laplace transform) cannot be used.
In order to solve the displacement model differential equations ana-
lytically, we introduced a simplified model variation, where the occu-
pancy function, ∂(t), is approximated as a step function, with ∂(t) = 0

before some time ts and ∂(t) = ∂max after. This allows the TACs to
be separated into two separate time-invariant systems, where the ini-
tial values in the second system will be given by the final values of
the first.
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In the fitting, all parameters except the occupancy were constrained
to be the same in both systems. The time of the step, ts, was fitted,
with the constraint that it occurs after the time of the intervention, tb.
ts replaces te in this solution, but they are not the same parameter.
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R E S U LT S A N D D I S C U S S I O N

In Paper III, we presented and evaluated a new kinetic model, based
on the 1TCM, for AIF-based analysis of data from PET displacement
studies. We evaluated the model in simulations, and tested it on pig
[11C]UCB-J scans with brivaracetam intervention.

12.1 estimation of occupancy

In the simulation experiment we simulated three different drug speeds
(te − tb = 5, 30, and 120 min) and three different occupancies (∂max

= 25, 50, and 75%). For the two faster drugs, the distributions of oc-
cupancy estimates are presented in histograms in Figure 2 of Paper
III. The precision of the occupancy estimates improved with higher
occupancies.

For the slowest drug speed (te− tb = 120), the distribution of ∂max

estimates are presented in Supplementary figure 5 of Paper III. The
model was unable to provide reasonable estimates, even at higher
occupancies. In these simulations, the max occupancy was reached a
full hour after the end of the PET scans. As such, it is not surprising
that the parameter estimation failed in this case. This condition was
included in the study, not because we expected it to be useful for
occupancy calculations, but because we wanted to test the limitations
of the model and the solutions.

The results from the pig experiment are presented in Figure 4 of
Paper III. To make an assessment on the quality of the occupancy
estimates, the Emax model was fitted to the occupancies and plasma
brivaracetam concentrations. The Emax model has previously been
shown to provide good fits to brivaracetam occupancies estimated
with [11C]UCB-J PET (Finnema et al., 2019). The model fitted well
with our estimated occupancies.

We used the peak plasma values for the dose-occupancy plots.
However, it is not clearly established which plasma concentrations
to use when occupancies have been estimated from a displacement
scan. In a classic baseline-block setup either the plasma concentration
at the start of the scan, at the end of the scan, or the mean plasma
concentration could be used (Takano et al., 2016). It does not matter
much, as the concentrations will often be relatively constant. During
an intervention scan, the plasma drug concentration will vary much
more throughout the scan. This is illustrated in Figure 4, which shows
the plasma brivaracetam time course for one of the pigs that under-
went both an intervention scan and a subsequent block scan.

77
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For comparison, we also fitted the Emax model with mean plasma
concentrations. This resulted in parameter estimates that were more
in line with those that have previously been reported. With peak
plasma concentrations the IC50 estimate was 1.26 µg/mL, and with
mean plasma concentrations we got an IC50 estimate of 0.47 µg/mL.
Previously, a brivaracetam IC50, calculated from human [11C]UCB-J
occupancy data, of 0.46 µg/mL has been reported (Finnema et al.,
2019).

Figure 4: Plasma brivaracetam concentration over time for the pig that re-
ceived a 2 mg/kg brivaracetam dose. The samples collected dur-
ing the intervention scan are indicated by blue markers, and those
collected during the block scan by pink markers.

Four of the pigs were scanned just once (the intervention scan).
Two pigs were scanned three times in one day, but brivaracetam was
administered just once per pig. Consequently, the occupancies were
lower in the block scans than in the corresponding intervention scans
as brivaracetam had undergone some washout (see the first tile of
Figure 4 in Paper III). In order to compare the intervention model oc-
cupancies to the baseline-block Lassen occupancies, we plotted them
versus their corresponding drug plasma level at the time of the re-
spective scan in the same dose-occupancy plots. The block-scan occu-
pancies seemed to agree well with the dose-occupancy relationship
established from the intervention scans.

12.2 the model

The proposed model seems to be appropriate for describing displace-
ment of [11C]UCB-J by brivaracetam in pig scans.

We employed a function developed for crop growth rates to model
the occupancy. This function is sigmoidal in shape, which is proba-
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bly not a good representation of the true underlying time course of
occupancy. However, we demonstrate here that it is a useful approx-
imation for brivaracetam in pigs. The occupancy function we have
used here has only two parameters (te, ∂max), which means that fit-
ting the model is relatively simple.

In the simulation study, the proposed occupancy function was used
both to simulate the data, and in the numerical solution. Although the
numerical solution also worked well in the pig study, brivaracetam
is a relatively fast drug. It seems likely that the exact shape of the
occupancy curve would not be of great significance for a drug which
rapidly reaches its peak occupancy.

The main assumptions of our model are not new to the field (En-
dres and Carson, 1998), and have been employed by other groups.
Very recently, a similar, though more complex, model for PET dis-
placement studies has been introduced (Naganawa et al., 2022), and
evaluated on [11C]UCB-J data with brivaracetam intervention. That
model, also includes kinetic modeling of the drug, including both
nondisplaceable and specific drug binding compartments, and relies
on plasma drug concentrations to be used as an input function in ad-
dition to the PET AIF. Although this, in all likelihood, is a much more
accurate representation of how a drug behaves in the body, the model
could not offer stable parameter estimates without fixing several of
the model parameters to previously reported population values (Na-
ganawa et al., 2022).

Regarding our model, it is possible, maybe even probable, that
it will not be applicable to all drugs and drug administration ap-
proaches. Although simulations showed promising results also with
a slower drug, the pig experiments only considered brivaracetam,
which is a relatively fast drug. Future work will have to show whether
the model also can be useful for displacement studies with other
drugs and radiotracers. We are currently applying the model to hu-
man [11C]UCB-J scans with levetiracitam, which, compared to brivarac-
etam, displaces [11C]UCB-J at a slower rate (Finnema et al., 2019).

The 2TC variant of the displacement model has not yet been im-
plemented and evaluated. This will be an important next step, as
a validated 2TC-based model would open up for PET displacement
studies with tracers that are best described by 2TC kinetics.

12.3 model solutions

We have proposed two different solutions to our model: one based
on numerical methods and one based on analytical methods. In both
the simulation study and the pig study, they yielded near-identical re-
sults. In the pig study, the numerical approach led to an IC50 estimate
of 1.26 µg/mL, and the analytical approach led to an IC50 estimate
of 1.27 µg/mL. Only for the lowest occupancies (25%) is there a clear
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difference in the distributions of occupancy estimates (see Figure 2 in
Paper III, Appendix C).

The default in PET kinetic modeling is to use analytical methods
to solve models. However, some recent publications have employed
numerical approaches to analyze PET displacement data (Mandev-
ille et al., 2022; Naganawa et al., 2022). With our implementations of
the model solutions, the numerical approach was much faster than
the analytical. Further, this approach also offers substantial flexibility
to the displacement model, as the particular form of the occupancy
curve can easily be changed for other applications.

However, we still think that there is value in analytically solving
the model. This is the approach that is closest to the established solu-
tions to time-invariant compartment models, and the implementation
should be easier and more familiar for most people with experience
in PET kinetic modeling. The single-step approximation in itself is in-
teresting to evaluate, as it is an already established one for reference
region based quantification of PET displacement scan data (ESRTM;
Zhou et al. (2006)).

We also briefly evaluated a multi-step solution, where the PET scan
was divided into several time-invariant systems with different occu-
pancies. Surprisingly, reducing the multistep approach to only a sin-
gle step did not appear to add bias, even for very slow-acting drugs.



Part VII

C O N C L U S I O N

It is much more difficult to judge oneself than to judge
others. If you succeed in judging yourself rightly, then

you are indeed a man of true wisdom.

— Antoine de Saint-Exupéry,
The Little Prince
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C O N C L U D I N G R E M A R K S A N D F U T U R E
P E R S P E C T I V E S

The aim of the thesis work was to improve the utility of PET for quan-
tification of drug interactions in the living human brain. This has
been endeavoured through the assessment of existing assumptions
and methods, evaluation of the effects of study design, and develop-
ment of novel methods.

13.1 nondisplaceable binding

In brain PET, it is common to assume that VND is uniform across re-
gions, and at least comparable across subjects. In fact, most of the es-
tablished methods for data quantification rely on these assumptions.
The assumption of constant VND, like many other assumptions made
in PET kinetic modeling, is often useful or even necessary. Still, for im-
proved interpretability of results, it is important to fully understand
the boundaries and limitations of these assumptions. I personally feel
that this is an area where a lot of work still remains to be done.

In Paper I, we conclude, based on several [11C]PBR28 datasets, that
in some instances VND may be different between groups: we found
that subjects with alcohol use disorder and Parkinson’s disease both
had significantly lower VND than their matched controls.

This raises a big question, which is relevant for all PET studies:
when and why is it meaningful to assume that the nondisplaceable
radiotracer binding is constant across groups and following interven-
tions? Both VT , BPND, and semiquantitative outcomes such as SUV

and SUVR, are directly dependent on the level of nondisplaceable up-
take. As such, no widely used PET outcome measure is resistant to
the possible confounding effects of VND. Simultaneous estimation of
VND (SIME), which was used in Paper I to show the between-group
differences in VND, itself assumes that VND is constant within sub-
jects. This assumption might also not hold in all situations.

SIME should in the future be applied to other tracers and datasets
in order to increase the confidence in results, or reveal possible group
differences in VND. This is especially important for comparison of
results between patient populations and controls in conditions that
could affect the structure and function of the brain.

The main focus of the thesis project is pharmacological competition
studies. Although Paper I lies slightly outside this scope, assessment
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of VND is also very important in the context of PET occupancy stud-
ies. With VT -based occupancy estimation, occupancy and VND are
highly correlated parameters, and an overestimation of VND will also
lead to an overestimation of the occupancy. Also, blocking of the spe-
cific binding by a competing unlabeled ligand is the current gold
standard method for estimation of VND.

In the future, I would like to study VND in the context of occu-
pancy studies more closely. It might, for example, be interesting to
investigate how the altered tracer kinetics in a block scan relative to a
baseline scan might effect VND estimation. Also, improved estimation
and better understanding of VND could also contribute to improved
estimation of occupancy.

13.2 drug occupancy studies

Throughout the thesis work, we have employed two different experi-
mental setups for PET pharmacological competition studies. In Paper
II we used the standard baseline-block setup, and in Paper III we
used within-scan displacement.

In Paper II we were able to quantitatively demonstrate that low-occu-
pancy datapoints in baseline-block studies contribute minimally to es-
timation of the dose-occupancy relationship. I hope that this, together
with our findings from the other simulation experiments, can be of
assistance to PET researchers planning future occupancy studies.

Many PET occupancy studies are performed with reference region
based quantification. This presents a different set of advantages and
challenges compared to the AIF-based quantification employed in Pa-
per II. Going forward, I would like to repeat a similar simulation
study for BPND-based occupancy. Ideally, this could also entail a
head-to-head comparison of BPND-based and VT -based occupancy
estimates. Data from such a study could facilitate deliberations on
whether or not to collect blood data as part of PET occupancy experi-
ments.

In Paper III, we confirmed that for [11C]UCB-J PET, in-scan displace-
ment presents a viable option for quantification of brivaracetam oc-
cupancy. We presented and validated a new kinetic model for anal-
ysis of displacement scan PET data. The in-scan intervention setup
can be especially useful for rapidly acting drugs, where the washout
might be too fast for accurate occupancy estimation with the tradi-
tional baseline-block setup.

I believe that the potential applications of the displacement model
reach far beyond what was revealed in Paper III. For example, by
changing the time-varying occupancy function, drugs with different
kinetics might be characterized more accurately. Future work should
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implement and evaluate the two-tissue compartment version of this
model, and evaluate the models for different radiotracers and drugs.
I also hope to apply the displacement model to pure block scans in
order to estimate the time-varying occupancy of drugs with a fast
washout.

Although some important contributions have been made with the pa-
pers included in this thesis, much work still remains in optimizing
both baseline-block and in-scan intervention occupancy studies. Ul-
timately, my ambition is to develop a framework in which the two
study designs can be compared head-to-head. This could hopefully
aid in future decisions on the experimental setup of drug occupancy
studies.





Part VIII

B I B L I O G R A P H Y

"People where you live,” the little prince said, “grow five
thousand roses in one garden... Yet they don’t find what
they’re looking for [...] And yet what they’re looking for

could be found in a single rose."

— Antoine de Saint-Exupéry,
The Little Prince
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Part IX

S TAT E M E N T S

Look up at the sky. Ask yourself, “Has the sheep eaten
the flower or not?” And you’ll see how everything

changes. . .

— Antoine de Saint-Exupéry,
The Little Prince
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The PET ligand 11C-PBR28 (N-((2-(methoxy-11C)-phenyl)methyl)-N-

(6-phenoxy-3-pyridinyl)acetamide) binds to the 18-kDa translocator
protein (TSPO), a biomarker of glia. In clinical studies of TSPO, the

ligand total distribution volume, VT, is frequently the reported out-

come measure. Since VT is the sum of the ligand-specific distribu-
tion volume (VS) and the nondisplaceable-binding distribution

volume (VND), differences in VND across subjects and groups will

have an impact on VT. Methods: Here, we used a recently devel-

oped method for simultaneous estimation of VND (SIME) to disen-
tangle contributions from VND and VS. Data from 4 previously

published 11C-PBR28 PET studies were included: before and after

a lipopolysaccharide challenge (8 subjects), in alcohol use disorder

(14 patients, 15 controls), in first-episode psychosis (16 patients, 16
controls), and in Parkinson disease (16 patients, 16 controls). In

each dataset, regional VT estimates were obtained with a standard

2-tissue-compartment model, and brain-wide VND was estimated

with SIME. VS was then calculated as VT − VND. VND and VS were
then compared across groups, within each dataset. Results: A

lower VND was found for individuals with alcohol-use disorder

(34%, P 5 0.00084) and Parkinson disease (34%, P 5 0.0032) than
in their corresponding controls. We found no difference in VND be-

tween first-episode psychosis patients and their controls, and the

administration of lipopolysaccharide did not change VND. Conclu-
sion: Our findings suggest that in TSPO PET studies, nondisplace-
able binding can differ between patient groups and conditions and

should therefore be considered.

Key Words: PET; translocator protein; 11C-PBR28; simultaneous

estimation; kinetic modeling

J Nucl Med 2021; 62:412–417
DOI: 10.2967/jnumed.120.243717

PETwith radioligands for the glial marker 18-kDa translocator
protein (TSPO) has been extensively used over the past 2 decades

to assess brain immune function in vivo (1). 11C-PBR28 (N-((2-

(methoxy-11C)-phenyl)methyl)-N-(6-phenoxy-3-pyridinyl)acetamide)

is a second-generation TSPO radioligand with signal-to-noise

characteristics superior to those of the first-generation radioligand
11C-PK11195 (2). As with other second-generation TSPO tracers,

the affinity of 11C-PBR28 to TSPO is affected by a single-nucleotide

polymorphism on the TSPO gene (rs6971), and in clinical studies,

TSPO genotype is used to classify subjects as low-, mixed-, or high-

affinity binders (3,4).
PET ligand binding to TSPO is often quantified by fitting a 2-

tissue-compartment model (2TCM), or variants thereof (5), to the

PET time–activity curves, using parent radioligand concentration

in arterial plasma as the input function. The 2TCM describes the

ligand kinetics using 2 tissue compartments, one for ligand that is

bound specifically to the target of interest and one for nondisplace-

able binding. The nondisplaceable compartment includes both free

and nonspecifically bound radioligand. The standard outcome

measure reported using 2TCM is the total distribution volume

(VT), which represents the ratio of total activity concentration in

tissue to that in plasma at equilibrium. VT is the sum of the non-

displaceable and specific distribution volumes (VT 5 VND 1 VS).

Some radioligands display negligible specific binding in a certain

brain region (i.e., VS 5 0). Such a region is usually referred to as a

reference region and can be used to estimate VND, which is as-
sumed to be constant throughout the brain. When a reference re-
gion is available, the binding potential with nondisplaceable
uptake as a reference, BPND (5VS/VND), is typically the reported
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outcome measure. TSPO is expressed throughout the brain, and
thus, no reference region exists for this target. It is therefore chal-
lenging to obtain reliable estimates of the relative contributions
from the specific and nondisplaceable binding, leaving a degree of
uncertainty about the interpretation of VT.
Recently, a method for simultaneous estimation of VND (SIME)

(6) was developed to estimate VND for tracers without a reference
region. SIME uses the assumption that nondisplaceable binding is
constant throughout the brain and estimates a global value for VND

by fitting a constrained 2TCM for several brain regions simulta-

neously. The performance of SIME with 11CPBR28 has been thor-

oughly tested in healthy human subjects (7). Using simulations,

pharmacologic competition data, and test–retest data, SIME-derived

estimates of VND and VS (calculated using 2TCM VT and SIME

VND) were shown to be accurate and reliable (7).
For comparison of VT between groups to be meaningful, there

must be an underlying assumption that VND is the same across the

groups. Currently, there is limited scientific evidence to back up

this assumption. Hence, our aim with this study was to investigate

whether nondisplaceable binding can be a confounding factor in

TSPO PET studies that use VT as an outcome measure. To achieve

this aim, SIME was used to quantify VND in 11C-PBR28 data from

4 different published datasets. In the first dataset, an immune

stimulator was administered to healthy subjects (8). The 3 remain-

ing datasets contain controls and subjects with alcohol-use disor-

der (AUD) (9), first-episode psychosis (FEP) (10), and Parkinson

disease (PD) (11).

MATERIALS AND METHODS

This study includes 4 datasets obtained at 2 PET centers. All

subjects underwent a 11C-PBR28 PET scan in a high-resolution re-

search tomograph (Siemens). Metabolite-corrected arterial input func-

tions were collected for all scans. T1-weighted MRI scans were

acquired to define regions of interest (ROIs). All subjects were geno-

typed for the rs6971 polymorphism, and low-affinity binders were

excluded. In previous publications, VT has been the primary reported

outcome measure. A list of the datasets, with subject information, is

reported in Table 1, and the reader is referred to the original publica-

tions for further details on data acquisition and processing.

Lipopolysaccharide

The lipopolysaccharide dataset (8) was collected at the Yale PET

Center. Eight healthy men were scanned twice on the same day, at

baseline and 3 h after injection of lipopolysaccharide (dose 1.0 ng/kg),

an acute immune stimulus. 11C-PBR28 was injected as a 1-min bolus,

and the PET scan duration was 120 min.

AUD

The AUD dataset (9) was collected at the Yale PET center. It

consists of 14 subjects with AUD and 15 age-matched control sub-

jects. Five of the control subjects also participated in the lipopolysac-

charide experiment. AUD subjects were imaged 1–4 d (in 1 case, 24 d)

after intake of their last alcoholic beverage. 11C-PBR28 was injected

as a 1-min bolus, and the PET scan duration was 120 min.

FEP

The FEP dataset (10) was collected at Karolinska Institutet. It con-
sists of 16 FEP patients and 16 age-matched controls. All patients

were naı̈ve to antipsychotic drugs. 11C-PBR28 was injected as a 10-s

bolus, and the PET scan duration was approximately 90 min.

PD

The PD dataset (11) was collected at Karolinska Institutet. It
consists of 16 patients with PD and 16 age-matched controls. 11C-

PBR28 was injected as a 10-s bolus, and the PET scan duration was

72 min.

SIME

The SIME method (6) works by first defining a grid of possible VND

values. Then, for each value in the grid, a 2TCM is fitted to the time–

activity curves with the constraint that K1 5 VND�k2 in all ROIs, reducing

the number of rate constants from 4 to 3. The residual sum of squares is

then computed for all ROIs and frames, and the VND that yields the lowest

residual sum of squares is selected as the estimate of a brain-wide VND.

TABLE 1
Dataset Summary

Subjects (n) Age

Dataset Group HABs MABs HABs MABs

Sandiego, 2015 Lipopolysaccharide 3 5 28.0 ± 6.0 (22.7–34.5) 23.6 ± 5.1 (19.1–31.1)

Hillmer, 2017 AUD

Controls 8 7 37.4 ± 9.0 (26.3–48.4) 32.8 ± 14.6 (19.1–55.6)

Patients 7 7 40.9 ± 7.9 (31.6–55.2) 37.9 ± 10.4 (26.9–51.0)

Collste, 2017 FEP

Controls 9 7 27.8 ± 9.3 (22–50) 25.7 ± 8.2 (20–43)

Patients 6 10 29.8 ± 8.2 (20–40) 27.7 ± 8.8 (19–47)

Varnäs, 2019 PD

Controls 8 8 64.9 ± 4.9 (57.8–71.5) 62.1 ± 5.3 (56.1–72.0)

Patients 8 8 63.6 ± 4.3 (57.1–69.1) 63.4 ± 6.4 (55.2–73.2)

HAB 5 high-affinity binder; MAB 5 mixed-affinity binder.

Age is given as mean ± SD, followed by range in parentheses.
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For all datasets, we used a VND grid from 0.01 to 5, with steps of

0.01, based on previous studies with SIME and 11C-PBR28 (7,12).

Initial evaluation of the data indicated that this range covers the cost

function minimum. The residual sum of squares was weighted by the

square root of the frame duration. Fractional blood volume was fitted
for each ROI separately. SIME VND was calculated using time–activity

curves from the cerebellum, parietal cortex, frontal cortex, occipital

cortex, temporal cortex, putamen, caudate, and thalamus, thus cov-

ering various brain structures and tissue types.

Calculation of Outcome Measures and ROIs

In each ROI, VT was calculated using a standard 2TCM, including

fitting of the fractional blood volume. VS (5VT 2 VND) was calcu-

lated from the 2TCM VT estimates and the SIME VND estimates. For

all datasets except the PD dataset, we report ROI-specific outcome

measures (VT, VS) in the cerebellum and frontal cortex. For PD, we
report VT and VS in the striatum instead of the frontal cortex, because

the striatum is considered a key region in the pathophysiology of PD

and is more frequently reported in PET studies.

Statistical Analysis

Statistical analyses were performed using MATLAB (version 9.5;

MathWorks). For the lipopolysaccharide data, a paired-sample t test was

used for all outcome measures (VND, VT, and VS) to test for a difference

between the pre- and postlipopolysaccharide scans. The percentage

change in the outcome measures for each subject was calculated as

100�(pre 2 post)/pre. For the remaining datasets, a univariate 2-way
ANOVAwithout an interaction term was applied for each outcome mea-

sure (VND, VT, and VS) to determine the group differences between

controls and patients, with log-transformed outcome measures as a de-

pendent variable and diagnosis and genotype as fixed factors, as described

earlier (12). Using the regression coefficients, b, from the ANOVA, the

percentage difference between patients and controls across genotypes was

calculated as 100 � ðebpatient2bcontrol 2 1Þ. The a-level was set to 0.05. Re-

ported P values were not corrected for multiple comparisons.

RESULTS

For all datasets, the results obtained for VT are in accordance with
those in the original publications. Below, we report the results for VT,
VS, and VND for each dataset separately. The results for the ROIs
presented below are consistent with the remaining ROIs included in
the SIME calculation (Supplemental Tables 1–4; supplemental mate-
rials are available at http://jnm.snmjournals.org). Results were also
unchanged when an interaction term was included in the ANOVA
(Supplemental Tables 5–7) and when volume-based weights were
used in the SIME analysis (Supplemental Tables 8–11).

Lipopolysaccharide

Lipopolysaccharide injection was associated with a significant
increase in VT in both the cerebellum (mean, 40% [SD, 34%]; P 5
0.016) and the frontal cortex (mean, 46% [SD, 23%]; P 5 0.0012).
VND was not affected by lipopolysaccharide (mean, 15% [SD,
40%]; P 5 0.38). The mean increase in VS was 59% (SD, 51%)
(P 5 0.0052) in the cerebellum and 66% (SD, 35%) (P 5 0.00026)
in the frontal cortex. The results are summarized in Figure 1.

AUD

VT was significantly lower in AUD subjects than in controls,
both in the cerebellum (18%, P 5 0.012) and in the frontal cortex
(23%, P 5 0.0048). VND was 34% lower in patients than in con-
trols (P 5 0.00084). VS did not differ significantly between the
groups. These results are shown in Figure 2. Genotype had a
significant effect on both VT and VS (P , 0.0005) but not on VND.

FEP

In the FEP dataset, VT was overall lower in patients than in
controls (32%, P 5 0.060 in the cerebellum; 36%, P 5 0.045 in

the frontal cortex). There was no significant difference in VND

between patients and controls (P 5 0.30). VS exhibited a larger

percentage separation between patients and controls than that ob-

served for VT in both the cerebellum (44%, P 5 0.054) and the

frontal cortex (57%, P 5 0.033). The results are shown in Figure

3. The effect of genotype was statistically significant for VT in the

cerebellum and frontal cortex (P5 0.011 and 0.017, respectively),

for VND in the nnn (P 5 0.0043), and for VS in the frontal cortex

(P 5 0.017) but not in the cerebellum (P 5 0.099).

PD

In the PD dataset, we found no statistically significant difference
in VT or VS between patients and controls, in either the cerebellum

(P 5 0.74 for VT, P 5 0.11 for VS) or the striatum (P 5 0.32 for

VT, P 5 0.42 for VS). VND was, however, lower in patients than in

FIGURE 1. Change in outcome measures (VT, VS, and VND) between

pre- and postlipopolysaccharide scans in cerebellum (A) and frontal

cortex (B). Individual subjects are connected with a line. P values and

percentage difference (perc. diff.) between pre- and postlipopolysac-

charide scans are shown. HAB 5 high-affinity binder; MAB 5 mixed-

affinity binder.

FIGURE 2. (A and C) Difference in outcome measures (VT, VS, and VND)

between controls (Ctrl) and subjects with AUD in cerebellum (A) and

frontal cortex (C). (B) Zoomed view of results for VND. P values and

percentage difference (perc. diff.) between controls and patients are

shown. HAB 5 high-affinity binder; MAB 5 mixed-affinity binder.
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controls (34%, P 5 0.0032). These results are shown in Figure 4.

Across all outcome measures and ROIs, there was a significant

effect of genotype (P 5 0.012 for VND, P , 1026 for VT and VS).

DISCUSSION

In this study, we used a new method to estimate VND in 4
clinical 11C-PBR28 datasets. We found that VND estimated with

this method was lower in AUD and PD than in their matched
controls, whereas no difference was found between FEP patients
and their controls or in subjects before and after lipopolysaccha-
ride injection. This was, to our knowledge, the first attempt to
disentangle the extent by which differences in nondisplaceable
binding may contribute to the observed differences in VT.

Lipopolysaccharide

Although leading to a pronounced increase in VT, administra-
tion of lipopolysaccharide had no apparent effect on SIME VND.
Lipopolysaccharide is a useful model to study an acute immune

response, and upregulation of TSPO has been observed in vivo in
several species, including mice (13), rats (14), pigs (15), and non-
human primates (16). When using VS as an outcome measure, we
observed a larger percentage separation between the pre- and post-
lipopolysaccharide scans, with mean differences of 59% and 66%
in the cerebellum and frontal cortex, respectively, and with vari-
ability similar to that of VT (coefficient of variation [SD/mean]
was 0.85 for VT and 0.86 for VS). This higher percentage differ-
ence occurred because VND is not affected by the challenge. In a
scenario in which VND is unaffected by a particular disease, and

VT consists of one third of VND and two thirds of VS, a 50%

difference in specific TSPO binding translates to only a 33% dif-

ference in VT. In such a scenario, though the effect sizes might

likely be the same, it follows that changes in VS more directly

reflect changes in TSPO densities, whereas changes in VT are

attenuated by the contribution from VND.

AUD

Both VT and VND were lower in AUD subjects than in their age-
matched controls, with a similar trend in VS. This finding may

explain a previous report in which mixed-affinity binders with

AUD had a lower 11C-PBR28 VT than mixed-affinity binder con-

trols across several brain regions, whereas no difference was seen

in high-affinity binders (17), since VND composes a larger fraction

of VT in mixed-affinity binders than in high-affinity binders. In a

separate cohort, Kalk et al. reported a lower 11C-PBR28 hippo-

campal VT in alcohol-dependent subjects than in controls, across

both genotypes (18). In the present analysis, although some of the

differences in VT between AUD and controls were ascribed to

differences in VND, frontal cortex VS still showed a sizeable (al-

beit nonsignificant) percentage difference between AUD subjects

and their controls. We can only speculate why VND would be

lower in AUD subjects; pharmacologic competition studies in this

population would be needed to conclusively establish levels of

specific and nondisplaceable radiotracer uptake. Chronic alcohol

exposure induces brain tissue atrophy, reduces cerebral perfusion,

and accelerates aging (19,20). Including gray matter volume as a

covariate in the statistical analysis did not change the results, in-

dicating that the findings are not driven by partial-volume effects

(Supplemental Table 12). Age-related alterations in tissue compo-

sition have been proposed as an explanation for differences in VND

observed with the 5-hydroxytryptamine receptor 2A ligand 18F-

altanserin (21). Although these questions remain unanswered, the

findings here reported illustrate how separation of VND and VS

could change the interpretation of results from TSPO PET studies.

FEP

Patients with FEP had SIME VND estimates similar to those of
their matched controls. Frontal cortex VT and VS values were

lower in patients. Using VS as an outcome measure resulted in a

larger percentage difference between the groups. Most previous

TSPO PET studies of FEP and schizophrenia have found no sig-

nificant differences in VT (22–24), whereas a recent metaanalysis,

which pooled PET data from 5 studies on psychosis and schizo-

phrenia using second-generation TSPO radioligands (152 subjects

in total), found strong evidence for lower VT values in patients

than in controls (25). If VS had been used as the outcome measure

in previous TSPO PET studies of FEP and schizophrenia, it is pos-

sible that the power to detect the population effect of a lower TSPO

also in the individual samples of patients would have been higher.

FIGURE 3. (A and C) Difference in outcome measures (VT, VS, and VND)

between controls (Ctrl) and FEP patients in cerebellum (A) and frontal

cortex (C). (B) Zoomed view of results for VND. P values and percentage

difference (perc. diff.) between controls and patients are shown. HAB 5
high-affinity binder; MAB 5 mixed-affinity binder.

FIGURE 4. (A and C) Difference in outcome measures (VT, VS, and VND)

between controls (Ctrl) and PD patients in cerebellum (A) and striatum

(C). (B) Zoomed view of results for VND. P values and percentage differ-

ence (perc. diff.) between controls and patients are shown. HAB 5 high-

affinity binder; MAB 5 mixed-affinity binder.

NONDISPLACEABLE BINDING IN TSPO PET • Laurell et al. 415



PD

We found that SIME VND was lower in PD patients than in
controls, but we observed no significant differences in VT, consis-
tent with findings in TSPO PET studies using another second-
generation radioligand (26,27). One study, using 11C-PK11195
and a basis-function implementation of the simplified reference
tissue model, found a higher BPND in PD patients than in controls
(28). Since BPND is defined as VS/VND, and given our findings, it
is possible that the higher BPND reported in the 11C-PK11195
study was due to lower nondisplaceable binding rather than higher
specific binding. This possibility illustrates that VND is a potential
confounding factor not only in studies using VT as an outcome
measure but also in those reporting BPND. By using ratio-based
methods to provide BPND in TSPO PET studies, one may mis-
takenly interpret a decrease in VND as an increase in TSPO bind-
ing. Similar to the finding in the AUD dataset, PD might be
associated with increased global atrophy (29), and it is possible
that altered tissue composition could explain the lower VND in PD
patients. Further studies are required to establish the reason for
this observed group difference.

Effect of VND on Genotype

We observed a pronounced effect of genotype on SIME VND in
both the FEP and the PD datasets but not in the AUD data. The
observed effect, if true, complicates interpretation of our current
understanding of the TSPO polymorphism, by implicating effects
both on the tracer’s affinity to TSPO and on nondisplaceable up-
take. When all the controls in this study were pooled, a difference
in VND between genotypes was quite evident (P 5 0.00016). We
identify 3 potential interpretations for this observation. One pos-
sibility is that SIME-derived estimates of VND are artefactually
contaminated by estimates of VS, so that high specific binding
results in an overestimation of VND. However, this spillover across
compartments has previously been tested and discarded using
simulations (7). This finding is also supported by the lipopolysac-
charide experiment, in which increased VS is not reflected in VND.
A second interpretation is that the higher affinity of the radio-
ligand in high-affinity binders leads to a higher nondisplaceable
binding because equilibrium conditions are achieved at a later
time for a high-affinity versus a low-affinity radioligand. The same
mechanisms could potentially lead to higher nondisplaceable
tracer binding in high-target-density brain regions than in regions
with low target densities. For 11C-raclopride, it has been suggested
that regional differences in observed occupancy could in fact be
attributable to spatially varying nondisplaceable uptake (30,31).
The third possibility is that SIME-derived VND estimates are af-
fected by other features, which are, in turn, dependent on the
genotype. For instance, it has previously been shown that VND

estimated with SIME may be sensitive to the shapes of the arterial
input function (32). The fact that input functions may differ be-
tween genotypes has been shown for both 11C-PBR28 (7) and the
TSPO SPECT radioligand 123I-CLINDE (33), as is to be expected
from the different levels of binding to TSPO in peripheral tissue
(34). Irrespective of cause, estimates of VND (and, as a conse-
quence, of BPND) may not be directly comparable across genotype
groups, and their difference could itself be a confounder in clinical
studies if the cohort is not balanced across genotypes. The datasets
included in this study, however, are well balanced across geno-
types; as such, a potential influence of differences in VND esti-
mates is unlikely. Pharmacologic competition data would be
needed to conclusively establish any effect of genotype on VND.

However, previous 11C-PBR28 blocking studies have included
only high-affinity-binder individuals (35) and therefore cannot
provide insights into potential differences between genotypes.

Limitations

For any arterial input model, including SIME, VND estimates
are sensitive to the input function shape. Further, similar to refer-
ence-tissue modeling, we did not consider spatial variations in
VND. SIME was additionally executed on a larger set of ROIs,
which resulted in close-to-identical findings (Supplemental Table
13). Yet, a formal procedure on how to establish a suitable ROI set
for estimation of VND remains to be investigated.

CONCLUSION

Our findings suggest that VND may be a potential confounding
factor in 11C-PBR28 PET studies. This outcome warrants further
studies to establish the observed VND differences and, if possible,
reveal their causes. We recommend the use of VS as an additional
outcome parameter in TSPO PET studies since this measure more
directly reflects binding to TSPO.
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KEY POINTS

QUESTION: Is nondisplaceable binding a confounding factor in
11C-PBR28 PET studies?

PERTINENT FINDINGS: Nondisplaceable uptake was estimated

for 4 11C-PBR28 PET datasets. In 2 of these (AUD and PD) there

was a significant difference in nondisplaceable uptake between

patients and controls.

IMPLICATIONS FOR PATIENT CARE: The possibility of obtain-

ing estimates of specific binding to TSPO may improve the inter-

pretability of nuclear imaging studies addressing the role of

neuroinflammation in several disorders.
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Supplementary material 
 
 
1. Results of statistical analyses for all ROIs  
Results of the statistical tests in all eight regions in the SIME analysis, for VND, VT and VS 
can be found in the following tables. Table 1 shows the results of the paired-sample t-test for 
the lipopolysaccharide dataset. ANOVA results are displayed in Table 2 for alcohol use 
disorder, in Table 3 for first-episode psychosis, and in Table 4 for Parkinson’s disease. 
  
Table 1: Results of the paired-sample t-test for the lipopolysaccharide (LPS) dataset 

 P(LPS) 
VND VT VS 

Caudate  
 
 
0.38 
 
 

0.0034 0.0014 
Cerebellum 0.016 0.0052 
Frontal cortex 0.0012 2.6E-4 
Occipital cortex  0.036 0.044 
Parietal cortex 0.047 0.055 
Putamen 0.0015 6.4E-4 
Temporal cortex 0.0067 0.0075 
Thalamus 0.022 0.022 

 
 
Table 2: Results of the ANOVA for the alcohol use disorder dataset. * One subject removed due to fitting failure of the two-
tissue compartment model.   

 P(diagnosis) P(genotype) 
VND VT VS VND VT VS 

Caudate  
 
 
 
8.4E-4 

0.089 0.85  
 
 
 
0.36 

0.0032 1.4E-4 
Cerebellum 0.012 0.15 2.3E-6 5.7E-8 
Frontal cortex 0.0048 0.065 4.4E-4 8.0E-5 
Occipital 
cortex*  

0.011 0.11 4.5E-4 4.9E-5 

Parietal cortex 0.022 0.31 2.7E-5 2.6E-6 
Putamen 0.085 0.89 1.2E-5 9.3E-7 
Temporal 
cortex 

0.023 0.36 1.8E-5 9.9E-7 

Thalamus 0.081 0.57 2.0E-5 1.1E-6 
 
 



 2 

 

 

 

Table 3: Results of the ANOVA for the first episode psychosis dataset 

 P(diagnosis) P(genotype) 
VND VT VS VND VT VS 

Caudate  
 
 
 
0.30 

0.047 0.030  
 
 
 
0.0043 

0.022 0.17 
Cerebellum 0.060 0.054 0.011 0.073 
Frontal cortex 0.045 0.033 0.017 0.099 
Occipital cortex  0.050 0.051 0.0094 0.057 
Parietal cortex 0.034 0.023 0.012 0.066 
Putamen 0.050 0.033 0.0061 0.023 
Temporal 
cortex 

0.060 0.049 0.0071 0.044 

Thalamus 0.042 0.029 0.0071 0.018 
 

 

Table 4: Results of the ANOVA for the Parkinson's disease dataset 

 P(diagnosis) P(genotype) 
VND VT VS VND VT VS 

Caudate  
 
 
 
0.0032 

0.15 0.47  
 
 
 
0.012 

3.7E-7 2.9E-6 
Cerebellum 0.78 0.17 4.3E-8 6.7E-7 
Frontal cortex 0.36 0.38 6.9E-9 8.5E-9 
Occipital cortex  0.73 0.12 1.1E-8 2.2E-8 
Parietal cortex 0.50 0.21 1.2E-8 2.1E-8 
Putamen 0.35 0.48 3.1E-7 9.1E-7 
Temporal cortex 0.59 0.17 7.0E-9 1.9E-8 
Thalamus 0.78 0.25 5.4E-9 1.5E-9 

 
 

2. ANOVA for VND with gray matter volume as covariate 
Table 5 holds the results for VND of an ANOVA which includes gray matter volume as a 
covariate. 
 
Table 5: Results for ANOVA on VND with gray matter volume as covariate, for the alcohol use disorder, first episode 
psychosis and Parkinson's disease datasets 

Dataset P(diagnosis) P(genotype) P(volume) 
Alcohol use disorder 0.0026 0.52 0.53 
First episode 
psychosis 

0.30 0.0053 0.38 

Parkinson’s disease 0.0039 0.038 0.63 
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3. ANOVA with diagnosis*genotype interaction  
In the following tables the results of an ANOVA which includes a diagnosis*genotype 
interaction term are presented; in Table 6 for alcohol use disorder, in Table 7 for first-episode 
psychosis, and in Table 8 for Parkinson’s disease. 
  
Table 6: Results of ANOVA with an interaction term for the alcohol use disorder dataset 

 P(diagnosis) P(genotype) P(diagnosis*genotype) 
VND VT VS VND VT VS VND VT VS 

Caudate  
 
 
 
 
 
8.4E-4 

   
 
 
 
 
 
0.33 

   
 
 
 
 
 
0.18 

  
Cerebellum 0.014 0.15 3.5E-

6 
9.3E-
8 

0.86 0.64 

Frontal 
cortex 

0.004
8 

0.058 4.5E-
4 

6.8E-
5 

0.38 0.21 

Occipital 
cortex  

0.011 0.097 4.7E-
4 

4.4E-
5 

0.42 0.24 

Parietal 
cortex 

0.025 0.32 3.9E-
5 

4.1E-
6 

0.89 0.99 

Putamen 0.093 0.90 1.8E-
5 

1.5E-
6 

0.78 0.80 

Temporal 
cortex 

0.026 0.37 2.6E-
5 

1.6E-
6 

0.89 0.95 

Thalamus 0.088 0.59 2.7E-
5 

1.5E-
6 

0.47 0.44 

 
Table 7: Results of ANOVA with an interaction term for the first episode psychosis dataset. * one subject excluded du to 
fitting failure of the two-tissue compartment model. 

 P(diagnosis) P(genotype) P(diagnosis*genotype) 
VND VT VS VND VT VS VND VT VS 

Caudate  
 
 
 
 
0.26 
 
 
 

0.018 0.011  
 
 
 
 
0.004
3 
 
 

0.013 0.14  
 
 
 
 
0.20 

0.006
9 

0.0089 

Cerebellum 0.024 0.020 0.006
1 

0.052 0.007
3 

0.0059 

Frontal 
cortex 

0.019 0.014 0.011 0.083 0.011 0.015 

Occipital 
cortex * 

0.025 0.023 0.006
4 

0.046 0.013 0.0089 

Parietal 
cortex 

0.016 0.011 0.008
1 

0.056 0.019 0.026 

Putamen 0.023 0.014 0.003
7 

0.016 0.016 0.015 

Temporal 
cortex 

0.025 0.019 0.003
8 

0.030 0.008
5 

0.0070 

Thalamus 0.020 0.013 0.004
6 

0.013 0.021 0.019 
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Table 8: Results of ANOVA with an interaction term for the Parkinson's disease dataset 

 P(diagnosis) P(genotype) P(diagnosis*genotype) 
VND VT VS VND VT VS VND VT VS 

Caudate  
 
 
 
 
0.0036 
 

0.16 0.48  
 
 
 
 
0.013 
 

5.8E-
7 

4.2E-
6 

 
 
 
 
 
0.57 

0.81 0.91 

Cerebellum 0.78 0.16 4.5E-
8 

5.4E-
7 

0.23 0.14 

Frontal 
cortex 

0.37 0.38 1.2E-
8 

1.4E-
8 

0.70 0.53 

Occipital 
cortex  

0.73 0.13 1.8E-
8 

3.0E-
8 

0.63 0.41 

Parietal 
cortex 

0.51 0.22 2.2E-
8 

3.5E-
8 

0.92 0.74 

Putamen 0.35 0.47 3.7E-
7 

7.3E-
7 

0.32 0.14 

Temporal 
cortex 

0.59 0.17 1.0E-
8 

2.3E-
8 

0.46 0.27 

Thalamus 0.78 0.25 8.8E-
9 

2.2E-
9 

0.54 0.40 

 
 
4. Results for SIME with ROI weights  
The following tables presents the results of the statistical testing when SIME VND was 
estimated using size-based ROI weights. The contribution of each ROI was weighted by the 
ratio of the region volume to the volume of the largest included region. The results for LPS 
are presented in Table 9, for alcohol use disorder in Table 10, for first-episode psychosis in 
Table 11, and for Parkinson’s Disease in Table 12. 
 
Table 9: Results of a pair-sample t-test on the lipopolysaccharide (LPS) dataset, where SIME VND was estimated with size-
based ROI weights 

 P(LPS) 
VND VS 

Caudate  
 
 
0.41 

0.0011 
Cerebellum 0.0050 
Frontal cortex 2.3E-4 
Occipital cortex  0.043 
Parietal cortex 0.054 
Putamen 7.0E-4 
Temporal cortex 0.0076 
Thalamus 0.026 
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Table 10: Results of the ANOVA on the alcohol use disorder dataset, where SIME VND was estimated using size-based ROI 
weigths. 

 P(diagnosis) P(genotype) 
VND VS VND VS 

Caudate  
 
 
0.0010 
 
 
 

0.86  
 
 
0.20 
 
 
 

1.4E-4 
Cerebellum 0.15 6.3E-8 
Frontal cortex 0.068 6.3E-5 
Occipital cortex  0.11 3.7E-5 
Parietal cortex 0.31 2.0E-6 
Putamen 0.93 1.6E-6 
Temporal cortex 0.38 1.2E-6 
Thalamus 0.60 1.2E-6 

 
 
Table 11: Results of the ANOVA on the first episode psychosis dataset, where SIME VND was estimated using size-based ROI 
weights 

 P(diagnosis) P(genotype) 
VND VS VND VS 

Caudate  
 
 
0.33 
 

0.031  
 
 
0.0045 
 
 
 

0.15 
Cerebellum 0.050 0.065 
Frontal cortex 0.031 0.090 
Occipital cortex  0.047 0.050 
Parietal cortex 0.022 0.059 
Putamen 0.033 0.022 
Temporal cortex 0.046 0.039 
Thalamus 0.029 0.017 

 
 
Table 12: Results of the ANOVA on the Parkinson's disease dataset, where SIME VND was estimated using size-based ROI 
weights 

 P(diagnosis) P(genotype) 
VND VS VND VS 

Caudate  
 
 
0.0014 
 
 
 

0.47  
 
 
0.017 
 
 
 

2.9E-6 
Cerebellum 0.17 6.7E-7 
Frontal cortex 0.38 8.5E-9 
Occipital cortex  0.12 2.2E-8 
Parietal cortex 0.21 2.1E-8 
Putamen 0.48 9.1E-7 
Temporal cortex 0.17 1.9E-8 
Thalamus 0.25 1.5E-9 
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5. Results for SIME executed on a larger ROI set 
For the two datasets from Karolinska Institutet we additionally calculated VND using a larger 
ROI set than the one presented in the manuscript. These ROIs were frontal cortex, temporal 
cortex, parietal cortex, occipital cortex, limbic lobe, striatum, thalamus, insula, anterior 
cingulate cortex, posterior cingulate cortex, and cerebellum. The results of the ANOVA for 
these VND values are presented in Table 13. 
 
Table 13: Results of the ANOVA for VND calculated on a larger ROI set 

Dataset P(diagnosis) P(genotype) 
First episode 
psychosis 

0.35 0.0074 

Parkinson’s disease 0.0023 0.010 
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a b s t r a c t 

Molecular neuroimaging is today considered essential for evaluation of novel CNS drugs; it is used to quantify 
blood-brain barrier permeability, verify interaction with key target and determine the drug dose resulting in 50% 

occupancy, IC 50 . In spite of this, there has been limited data available to inform on how to optimize study designs. 
Through simulations, we here evaluate how IC 50 estimation is affected by the (i) range of drug doses admin- 

istered, (ii) number of subjects included, and (iii) level of noise in the plasma drug concentration measurements. 
Receptor occupancy is determined from PET distribution volumes using two different methods: the Lassen plot 
and Likelihood estimation of occupancy (LEO). We also introduce and evaluate a new likelihood-based estimator 
for direct estimation of IC 50 from PET distribution volumes. 

For estimation of IC 50 , we find very limited added benefit in scanning individuals who are given drug doses 
corresponding to less than 40% receptor occupancy. In the range of typical PET sample sizes (5–20 subjects) each 
extra individual clearly reduces the error of the IC 50 estimate. 

In all simulations, likelihood-based methods gave more precise IC 50 estimates than the Lassen plot; four times 
the number of subjects were required for the Lassen plot to reach the same IC 50 precision as LEO. 

1. Introduction 

Drug development is an expensive and time-consuming process. It 
has been estimated that the development of drugs targeting the brain 
on average costs close to USD 800 million ( Wouters et al., 2020 ). One 
factor contributing to the high costs is the relatively low probability of 
success; only 15% of central nervous system (CNS) drug candidates en- 
tering clinical trials make it to market ( Wong et al., 2019 ). Recent years 
have seen an increase in the use of molecular imaging in general, and 
positron emission tomography (PET) in particular, as a tool for facilitat- 
ing the drug development process ( Son et al., 2019 ). PET is particularly 
useful in the early parts of the process, because of its ability to locate 
and quantify potential CNS drug targets, such as receptors, transporters, 
and enzymes ( Takano et al., 2016 ). This allows for both a fast identifi- 
cation of drug candidate failure, and can help prioritize candidates for 
subsequent testing ( Gunn and Rabiner, 2017 ). With PET pharmacoki- 

Abbreviations: LEA, Likelihood Estimation of Affinity; LEO, Likelihood Estimation of Occupancy; Δ, Occupancy; Δmax , Maximum attainable target occupancy; C P , 
Plasma drug concentration. 

∗ Corresponding author at: Neurobiology Research Unit, 6-8 Inge Lehmanns Vej, Rigshospitalet, DK-2100, Copenhagen, Denmark. 
E-mail address: gjertrud.laurell@nru.dk (G.L. Laurell) . 

netic competition studies, it is also possible to quantify the relationship 
between drug dose or, even better, plasma concentration and target oc- 
cupancy by, e.g., estimating the affinity with which a drug binds to its 
target. This information can then be used to guide dosing in phase II 
studies, which is of importance since inappropriate dosing can lead to 
failure of phase II and III studies ( Matthews et al., 2012 ; Takano et al., 
2016 ). Consequently, the use of PET in CNS drug development has the 
potential to greatly reduce costs and increase efficiency. 

PET pharmacokinetic competition studies are typically used to deter- 
mine the percentage of target molecules that are engaged by a drug at a 
certain dose (‘the occupancy’). In these studies, each subject is scanned 
at least twice with a radioligand that binds to the same target as the 
drug; first at baseline, and then again after administration of the drug. 
The occupancy (i.e., the percentage of available target molecules bound 
by the drug during the second scan) is determined by comparing the 
outcome measures from the two scans. For radioligands for which no 

https://doi.org/10.1016/j.neuroimage.2022.119620 . 
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suitable reference region exists, the total distribution volume ( V T ) is of- 
ten the outcome measure of choice ( Innis et al., 2007 ). 

In the presence of a suitable reference region for the radiotracer, 
the binding potential with respect to the non-displaceable compartment 
( BP ND ) can be reliably determined. In these cases, the receptor occu- 
pancy is the percentage reduction of BP ND between the baseline and 
block scans. For radiotracers without an appropriate reference region, 
the occupancy must be based on V T . Because V T contains both target- 
specific and non-displaceable binding, the decrease in V T observed in 
the blocked scan is most often not proportional to the target occupancy. 
The standard method to analyze such data is the Lassen plot, which es- 
timates occupancy ( Δ) and non-displaceable distribution volume ( V ND ) 
using linear regression ( Cunningham et al., 2010 ; Lassen et al., 1995 ). 
The association between a subject’s occupancy and the corresponding 
plasma drug level is then typically quantified with the dose-occupancy 
plot, sometimes referred to as the E max model. In the E max model, the 
data are fitted to the equation, 

Δ = Δmax 
𝐶 𝑃 

𝐶 𝑃 + 𝐼𝐶 50 
. (1) 

where 𝐶 𝑃 is the plasma concentration of the drug, Δ𝑚𝑎𝑥 denotes the 
maximum attainable receptor occupancy, and 𝐼𝐶 50 denotes the plasma 
drug level at which 50% of the Δ𝑚𝑎𝑥 is reached. In this context, 𝐼𝐶 50 is 
taken as a measure of the drug’s affinity to the target receptor. 

The currently applied study design to estimate drug occupancies and 
IC 50 leaves room for improvement. In both the Lassen plot and in the 
dose-occupancy plot, there are non-negligible errors in the independent 
variables. For the Lassen plot, the uncertainty in the independent vari- 
able (i.e., V T ) can be as high as 20%, as estimated from test-retest studies 
( Arakawa et al., 2020 ; Collste et al., 2016 ; Zanderigo et al., 2018 ). In 
the E max model, the measured plasma drug level is the independent vari- 
able, which also comes with measurement errors . When the independent 
variables in a linear model are noisy, the outcome parameters can be in- 
fluenced by “regression dilution ”, that is, a systematic underestimation 
of the regression slope ( Spearman, 1904 ). 

When planning a target engagement study, it is important to take 
these shortcomings into account to ensure that reasonable conclusions 
are drawn from the observed results. From a data-analysis perspective, 
some alternative tools have been proposed to reduce the error induced 
by the Lassen plot ( Naganawa et al., 2019 ; Schain et al., 2018 ). How- 
ever, for estimation of IC 50 , no alternative to fitting Eq. (1) has, to our 
knowledge, been presented. 

From a data acquisition point of view, the range of administered 
doses and the number of included subjects should be optimized and bal- 
anced with the research budget and the ethical considerations associated 
with the exposure of humans to radioactivity. In practice, it is not trivial 
to make these decisions. With regard to administered dose, guidelines 
from the European Association of Nuclear Medicine Drug Development 
Committee recommend that doses should ‘cover the entire range from 

low to high occupancy’ ( Takano et al., 2016 ). In the context of using 
PET for dose selection for clinical trials, they suggest that occupancies 
could range from 20% through 80%. In our experience, estimating oc- 
cupancies as low as 20% is difficult because at such low occupancies, 
the noise in the V T estimates is large in relation to the true difference 
in V T between the two PET scans. In addition, at low occupancies, the 
level of drug in plasma can approach the lower limit of quantification, 
which may lead to a situation where data from additional scans add lit- 
tle value to the study. It is therefore important to assess how feasible and 
informative it is to conduct PET scans at low occupancies considering 
the associated costs and radiation exposure. 

Regarding sample size, there is currently no good procedure to de- 
termine a suitable sample size a priori. Here, the guidelines from the 
European Association of Nuclear Medicine Drug Development Commit- 
tee simply advise that as many data points as possible should be included 
( Takano et al., 2016 ). Clearly, parameter estimation improves with in- 
creasing N , but it would be useful to identify the sample size where 

the improvement is too incremental to motivate additional expense and 
exposure. 

In this study, our objective is to provide data-driven recommenda- 
tions on how to plan and analyze pharmacological intervention PET 

studies where V T is the PET outcome measure. Using simulations, we 
determine a suitable occupancy range that optimizes the IC 50 estimate 
and evaluate the extent by which the estimate improves with increas- 
ing sample size. Using simulated V T values, both the Lassen plot and a 
maximum-likelihood based estimator are used to calculate correspond- 
ing occupancies, which are then combined in dose-occupancy plots to 
determine IC 50 for the entire population. We also test the extent by 
which errors in the measurements of drug level in plasma affect the 
IC 50 estimates. Finally, we present a new maximum-likelihood estima- 
tor that makes use of V T values at baseline and block conditions for all 
subjects as input and estimates the IC 50 and Δ𝑚𝑎𝑥 in a single step. 

2. Methods 

2.1. Simulations 

We conducted a total of three simulation experiments, each aiming 
to answer one of the following questions: 

1. Is it worthwhile to acquire data at lower occupancies when the goal 
is to determine the dose-occupancy relationship as precisely as pos- 
sible? 

2. Is there an upper limit of the sample size, above which acquisition 
of additional data is not justified to establish the dose-occupancy 
relationship? 

3. Are measurement errors in plasma drug levels causing a bias in IC 50 

estimates when fitting Eq. (1) ? 

Each experiment consisted of running a set of simulations, in which 
some parameters were varied. In each case, V T values with realistic noise 
properties for a set of brain regions at baseline and blocking conditions 
were simulated. For each choice of parameters, 1000 iterations of the 
simulation were performed. The true underlying values for 𝐼𝐶 50 and 
Δ𝑚𝑎𝑥 were kept constant throughout all three experiments, at 2 𝜇g/L 
and 85%, respectively. These values are based on the 𝐼𝐶 50 and Δ𝑚𝑎𝑥 
of psilocin binding to the serotonin 2A receptor, which have been esti- 
mated to be 1.95 𝜇g/L and 77% in a [ 11 C]Cimbi-36 baseline-block study 
( Madsen et al., 2019 ). 

In each instance, occupancies were estimated using both Lassen 
plot and a likelihood-based estimator for occupancy (LEO, see 
Section 2.3.2 Likelihood estimation of occupancy ) and pooled in a dose- 
occupancy plot to estimate IC 50 . IC 50 was also estimated directly from 

the V T values using a likelihood-based estimator for IC 50 (LEA, see 
Section 2.3.3 Likelihood estimation of affinity ). Thus, a total of three meth- 
ods were used, each resulting in 1000 estimates of IC 50 for every simu- 
lated scenario. 

2.1.1. Simulation experiment 1: contribution of data points with low 

occupancy 

In the first simulation experiment we investigated the extent by 
which occupancy estimates in the lower range improves the IC 50 es- 
timate. First, we simulated 1000 instances of V T values at baseline and 
blocking conditions for 5 subjects, with occupancies evenly distributed 
between 53.3% and 80%. Subsequently, we added a subject with 6.7% 

lower occupancy than the lowest occupancy in the last run and re-ran 
the simulation. This procedure was repeated until, in the last simulation, 
the dataset consisted of V T values from 10 subjects, with occupancies 
evenly distributed between 20% and 80%. This design is illustrated in 
Fig. 1 B. 

2.1.2. Simulation experiment 2: number of subjects 

In the second experiment we investigated the impact of the number 
of subjects on the estimate of 𝐼𝐶 50 . First, we simulated 1000 instances 

2 
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Fig. 1. Simulation experiment 1. (A) Boxplots illustrating the 
distribution of IC 50 estimates obtained with the three different 
methods: Lassen plot and dose-occupancy plot (Lassen, blue). 
Likelihood estimation of occupancy and dose-occupancy plot 
(LEO, red) and likelihood estimation of affinity (LEA, green), 
across increasing numbers of subjects and dose ranges. (B) Il- 
lustration of the simulation study design. The black dots indi- 
cate the block-scan occupancies for each of the subjects in the 
simulated study. For each additional subject, the lowest in- 
cluded occupancy is decreased by 6.67%. With 5 subjects the 
occupancy ranges from 53.3% to 80%, and with 10 subjects 
the occupancy ranges from 20% to 80%. 

of V T values from five subjects acquired at both baseline and block con- 
ditions. The number of subjects was then increased in steps of one up to 
25 subjects, and then in steps of five up to 45 subjects. In each case, the 
occupancies were evenly distributed between 40% and 80%. This occu- 
pancy range was chosen based on the results of simulation experiment 
1. 

2.1.3. Simulation experiment 3: noise in plasma drug level measurements 

In the final experiment we investigated how measurement error in 
the plasma drug level, C P , affects the 𝐼𝐶 50 estimate. First, 1000 instances 
of V T values for 10 subjects at baseline and block was simulated, with 
occupancies in the range 40–80%, and corresponding C p values were 
calculated from Eq. (1) (i.e., no noise in C p ). The procedure was then 
repeated, with the value for C p being replaced with a number sampled 
from a normal distribution with mean equal to the true value for C P , 
and standard deviation (SD) equal to the true C P multiplied by a scale 
factor. This scale factor (which represents the coefficient of variation 
[SD/mean] of the data) was initially set to 0.1, and then gradually in- 
creased to 1, in steps of 0.1. Thus, a total of 11 sets of V T values in 10 
subjects were generated, with increasing noise levels in C p across the 
different datasets. 

2.2. Simulation framework 

We developed a simulation setup designed to generate V T values with 
realistic noise properties for a set of brain regions. The simulated data is 
based on a published dataset with the serotonin 2A agonist radioligand 
[ 11 C]Cimbi-36 ( da Cunha-Bang et al., 2019 ). All subjects in the dataset 
had provided written informed consent, and the study was approved 
by the Ethics committee for the Capital Region of Denmark (Journal 
number: H-4-2012-105). All [ 11 C]Cimbi-36 scans are included in the 
Cimbi database, and are available for academic purposes ( Knudsen et al., 
2016 ). A full description of the simulation framework can be found in 
the supplemental material. 

2.3. Calculation of IC 50 

We evaluated three approaches for estimation of 𝐼𝐶 50 , (i) dose- 
occupancy plot ( Eq. (1) ) with occupancy estimates from Lassen plot, 
(ii) dose-occupancy plots with occupancy estimates from likelihood 

estimation of occupancy (LEO, see Section 2.3.2 Likelihood estimation 

of occupancy ), and (iii) likelihood estimation of affinity (LEA, see 
Section 2.3.3 Likelihood estimation of affinity ). For both LEO and LEA, 
the estimated covariance matrix, Σ̂, was obtained based on a simulated 
test-retest dataset with ten subjects, as outlined in the supplemental ma- 
terial (section A.4). In both the dose-occupancy plot and in LEA, IC 50 

was constrained to be positive, and Δmax was constrained to be between 
0 and 1. The performance of each method was visually assessed using 
boxplots of the IC 50 estimates. 

2.3.1. Lassen plot 

In absence of an appropriate reference region, the Lassen plot is cur- 
rently the only established method to estimate occupancies from PET 

data. It is based on the following assumptions about V T in the baseline 
and block scans: 
{ 

𝑽 𝐛𝐚𝐬𝐞 𝐓 = 𝑉 ND + 𝑽 𝐒 
𝑽 𝐛𝐥𝐨𝐜𝐤 𝐓 = 𝑉 ND + ( 1 − Δ) 𝑽 𝐒 

. (2) 

The Lassen plot is achieved by re-arraigning those equations, result- 
ing in: 

𝑽 𝒃 𝒂 𝒔 𝒆 𝑻 − 𝑽 𝒃 𝒍 𝒐 𝒄 𝒌 𝑻 = Δ
(
𝑽 𝒃 𝒂 𝒔 𝒆 𝑻 − 𝑉 𝑁𝐷 1 

)
, (3) 

where 𝑽 𝒃 𝒂 𝒔 𝒆 𝑻 and 𝑽 𝒃 𝒍 𝒐 𝒄 𝒌 𝑻 are 𝐾 × 1 arrays of regional V T values in K brain 
regions. Plotting 𝑽 𝒃 𝒂 𝒔 𝒆 𝑻 − 𝑽 𝒃 𝒍 𝒐 𝒄 𝒌 𝑻 versus 𝑽 𝒃 𝒂 𝒔 𝒆 𝑻 typically results in a linear 
relationship, where the slope and x -intercept corresponds to estimates of 
Δ and 𝑉 𝑁𝐷 , respectively ( Cunningham et al., 2010 ; Lassen et al., 1995 ). 
As mentioned previously, error in the independent variable ( 𝑽 𝒃 𝒂 𝒔 𝒆 𝑻 ) 
means that estimates of Δ and 𝑉 𝑁𝐷 derived with Lassen plot may be bi- 
ased. IC 50 was obtained via nonlinear fitting of the parameters in Eq. (1) , 
with the occupancy estimates derived from the Lassen plot. 

2.3.2. Likelihood estimation of occupancy 

Like the Lassen plot, LEO ( Schain et al., 2018 ) provides estimates of 
Δ and V ND given regional V T values at baseline and block conditions. 
It is based on the same basic assumptions, but rather than relying on 
linear regression, LEO uses a maximum likelihood procedure, which in 
theory provides asymptotically unbiased estimates. An important fea- 
ture of LEO is that it accounts for measurement errors in regional V T 

values by including the covariance matrix Σ in the objective function. 
To obtain an estimate of Σ, we propose using a test-retest dataset. 

3 
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The LEO log-likelihood function is 

𝓁 
(
𝑉 𝑁𝐷 , 𝑽 𝑺 , Δ|𝑽 𝒃 𝒂 𝒔 𝒆 𝑻 , 𝑽 𝒃 𝒍 𝒐 𝒄 𝒌 𝑻 

)
= − 

(
𝑽 𝑏𝑎𝑠𝑒 𝑻 − 𝑉 𝑁𝐷 1 − 𝑽 𝑺 

)𝑇 
∑−1 (

𝑽 𝑏𝑎𝑠𝑒 𝑻 − 𝑉 𝑁𝐷 1 − 𝑽 𝑺 
)
− 

(
𝑽 𝑏𝑙𝑜𝑐𝑘 𝑻 − 𝑉 𝑁𝐷 1 − ( 1 − Δ) 𝑽 𝑺 

)𝑇 
∑−1 (

𝑽 𝑏𝑙𝑜𝑐𝑘 𝑻 − 𝑉 𝑁𝐷 1 − ( 1 − Δ) 𝑽 𝑺 
)
, (4) 

where constant terms have been excluded because they will not affect 
the optimization. The dimensionality in (4) is reduced by solving 𝜕 

𝜕 𝑽 𝒔 
𝓁 = 

0 , which leads to the following expression for V S : 

𝑽 𝑺 = 

𝑽 𝒃 𝒂 𝒔 𝒆 𝑻 + ( 1 + Δ) 
(
𝑽 𝑏𝑙𝑜𝑐𝑘 𝑻 − 𝑉 𝑁𝐷 

)

1 + ( 1 + Δ) 2 
. (5) 

As a result, the number of parameters in the LEO log-likelihood is 
reduced from 𝐾 + 2 to two ( V ND and Δ). IC 50 was obtained via nonlinear 
fitting of the parameters in Eq. (1) , with the occupancy estimates derived 
from LEO. 

LEO Matlab code, and instructions on how to use it, are available at 
https://github.com/martinschain/LEO . 

2.3.3. Likelihood estimation of affinity 

LEA is an extension of LEO, where 𝐼𝐶 50 and Δ𝑚𝑎𝑥 are calculated in a 
single step from the regional V T values. If we combine the assumptions 
of the Lassen plot/LEO ( Eq. (2) ) and the dose-occupancy response curve 
( Eq. (1) ), we get the following expressions for V T in the baseline and 
block scans 

⎧ 
⎪ ⎨ ⎪ ⎩ 

𝑽 𝒃 𝒂 𝒔 𝒆 𝑻 = 𝑉 𝑁𝐷 1 + 𝑽 𝑺 + 𝜀 𝒃 𝒂 𝒔 𝒆 

𝑽 𝒃 𝒍 𝒐 𝒄 𝒌 𝑻 = 𝑉 𝑁𝐷 1 + 

(
1 − Δ𝑚𝑎𝑥 

𝐶 𝑃 
𝐶 𝑃 + 𝐼𝐶 50 

)
𝑽 𝑺 + 𝜀 𝒃 𝒍 𝒐 𝒄 𝒌 

, (6) 

where 𝜀 𝒃 𝒂 𝒔 𝒆 and 𝜀 𝒃 𝒍 𝒐 𝒄 𝒌 are arrays of errors for each region in the baseline 
and block scans respectively. If we assume that the error in V T is nor- 
mally distributed, and that the variance is constant within each region 
between scans, the measured V T ’s can be expressed as 

⎧ ⎪ ⎨ ⎪ ⎩ 

𝑽 𝒃 𝒂 𝒔 𝒆 𝑻 ∼ 𝑁 

(
𝑉 𝑁𝐷 1 + 𝑽 𝑺 , 

∑)

𝑽 𝒃 𝒍 𝒐 𝒄 𝒌 𝑻 ∼ 𝑁 

(
𝑉 𝑁𝐷 1 + 

(
1 − Δ𝑚𝑎𝑥 

𝐶 𝑃 
𝐶 𝑃 + 𝐼𝐶 50 

)
𝑽 𝑺 , 

∑), (7) 

where Σ is the covariance matrix of the data. Based on this, we derive a 
log-likelihood function where 𝑉 𝑁𝐷 , 𝐼𝐶 50 and Δ𝑚𝑎𝑥 are estimated from all 
subjects’ V T values. For a dataset of N subjects, where each subject has 
undergone one baseline and one block scan, the log-likelihood function 
becomes. 

𝓁( 𝐼𝐶 50 , Δ𝑚𝑎𝑥 , 𝑉 𝑁𝐷, 1 , 𝑉 𝑁𝐷, 2 , … , 𝑉 𝑁𝐷,𝑁 

|𝑽 𝒃 𝒂 𝒔 𝒆 𝑻 , 1 , 𝑽 
𝒃 𝒂 𝒔 𝒆 
𝑻 , 2 , … , 𝑽 𝒃 𝒂 𝒔 𝒆 𝑻 , 𝑵 

, 𝑽 𝒃 𝒍 𝒐 𝒄 𝒌 𝑻 , 1 , 𝑽 𝒃 𝒍 𝒐 𝒄 𝒌 𝑻 , 2 , … , 𝑽 𝒃 𝒍 𝒐 𝒄 𝒌 𝑻 , 𝑵 

, 

𝐶 𝑃 , 1 , 𝐶 𝑃 , 2 , … , 𝐶 𝑃 ,𝑁 

) 

= 

𝑁 ∑
𝑛 =1 

[ 
− 

(
𝑽 𝑏𝑎𝑠𝑒 𝑻 , 𝒏 − 𝑉 𝑁𝐷,𝑛 1 − 𝑽 𝑺 , 𝒏 

)𝑇 ∑−1 (
𝑽 𝑏𝑎𝑠𝑒 𝑻 , 𝒏 − 𝑉 𝑁𝐷,𝑛 1 − 𝑽 𝑺 , 𝒏 

)

− 

( 

𝑽 𝑏𝑙𝑜𝑐𝑘 𝑻 , 𝒏 − 𝑉 𝑁𝐷,𝑛 1 − 

( 

1 − Δ𝑚𝑎𝑥 
𝐶 𝑃 ,𝑛 

𝐶 𝑃 ,𝑛 + 𝐼𝐶 50 

) 

𝑽 𝑺 , 𝒏 
) 𝑇 

∑−1 
( 

𝑽 𝑏𝑙𝑜𝑐𝑘 𝑻 , 𝒏 − 𝑉 𝑁𝐷,𝑛 1 − 

( 

1 − Δ𝑚𝑎𝑥 
𝐶 𝑃 ,𝑛 

𝐶 𝑃 ,𝑛 + 𝐼𝐶 50 

) 

𝑽 𝑺 , 𝒏 
) ] 

(8) 

Constant terms have been excluded from (8), because they do not af- 
fect the optimization. Similar to LEO, solving 𝜕 

𝜕 𝑽 𝒔 
𝓁 = 0 provides a closed 

form expression for V S , which can be substituted to reduce the dimen- 
sionality when fitting (8). 

𝑽 𝑺 , 𝒏 = 

𝑽 𝒃 𝒂 𝒔 𝒆 𝑻 , 𝒏 − 𝑉 𝑁𝐷,𝑛 1 + 

(
1 − Δ𝑚𝑎𝑥 

𝐶 𝑃 ,𝑛 
𝐶 𝑃 ,𝑛 + 𝐼𝐶 50 

)(
𝑽 𝒃 𝒍 𝒐 𝒄 𝒌 𝑻 , 𝒏 − 𝑉 𝑁𝐷,𝑛 1 

)

1 + 

(
1 − Δ𝑚𝑎𝑥 

𝐶 𝑃 ,𝑛 
𝐶 𝑃 ,𝑛 + 𝐼𝐶 50 

)2 . (9) 

LEA treats 𝐼𝐶 50 and Δ𝑚𝑎𝑥 as global parameters shared by all sub- 
jects, whereas 𝑉 𝑁𝐷 may differ across subjects. Thus, LEA provides 𝑁
estimates of 𝑉 𝑁𝐷 and single estimates of 𝐼𝐶 50 and Δ𝑚𝑎𝑥 ( 𝑁 + 2 param- 
eters in total). 

LEA Matlab code, and instructions on how to use it, are available at 
https://github.com/Gjertrud/LEA . 

3. Results 

3.1. Simulation experiment 1: contribution of data points with low 

occupancy 

The distribution of IC 50 estimates for each method is presented in 
Fig. 1 . For all three methods (Lassen plot, LEO, and LEA), inclusion of 
subjects with low occupancy typically had little impact on the result; for 
example, including 7 subjects with occupancy ranging from 40 to 80% 

resulted in roughly similar distribution of IC 50 estimates as including 10 
subjects with occupancy ranging from 20 to 80%. 

Using the Lassen plot to estimate occupancy consistently resulted in 
markedly higher errors than the likelihood-based methods, while mini- 
mal difference between LEO and LEA was observed. 

3.2. Simulation experiment 2: number of subjects 

The distribution of IC 50 estimates for increasingly larger datasets 
is presented in Fig. 2 . In general, increasing the sample size resulted 
in more narrow distributions around the true IC 50 value for all three 
methods. The sample size has no obvious effect on bias. Each consecu- 
tive increment had less effect on the distribution than the previous one, 
and each added subject beyond approximately 20–30 resulted in only 
marginal improvements. 

As in experiment 1, the Lassen plot resulted in substantially larger er- 
rors compared to the likelihood-based methods. For example, the Lassen 
plot requires 40–45 subjects to achieve a IC 50 distribution that is equally 
narrow around the true IC 50 as the one observed for the likelihood-based 
methods at 10 subjects. 

3.3. Simulation experiment 3: noise in plasma drug level measurements 

The distribution of IC 50 for increasing levels of noise in the plasma 
drug measurements is shown in Fig. 3 A. As expected, the IC 50 error 
increases with increasing plasma error for all three methods. For low or 
no noise in measurement of drug plasma concentration, LEO and LEA 

showed comparable IC 50 distributions. These were narrower than those 
seen with the Lassen plot. When the plasma error scale factor (SD/mean) 
exceeds approximately 0.5 the IC 5 0 distributions become much wider 
for all three methods, although less so for LEA than for Lassen and LEO. 
At these high noise levels there is also a clear bias, with a tendency to 
overestimate IC 50 . Again, this is more pronounced for Lassen and LEO 

than for LEA. The effect of noise on the estimated dose-occupancy curve 
is illustrated in Fig. 3 C, which shows the mean and SD of the curve fits 
for each of the methods at the max noise level. At this noise level the 
LEO curve is completely overlapping with the Lassen curve, while for no 
plasma noise ( Fig. 3 B) the LEO mean and SD curves are almost identical 
to the LEA ones. 

4. Discussion 

In this study, we provide data to inform the design and analysis of a 
PET occupancy study. Using simulated data, we evaluated how different 
experimental setups and analytical methods affected the error in IC 50 

estimation. Throughout all simulations the likelihood-based estimators 
considerably outperformed the traditional Lassen plot. 

In drug development, the relationship between plasma drug concen- 
tration and occupancy established by the IC 50 and Δmax is often used to 
further inform about doses relevant for clinical trials. To illustrate how 
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Fig. 2. Simulation experiment 2. Boxplots illustrating the dis- 
tribution of the IC 50 estimates obtained with the three different 
methods: Lassen plot and dose-occupancy plot (Lassen, blue). 
Likelihood estimation of occupancy and dose-occupancy plot 
(LEO, red) and likelihood estimation of affinity (LEA, green), 
across increasing numbers of subjects. For all different num- 
bers of subjects, the occupancies within each dataset ranges 
from 40% to 80%. 

Fig. 3. Simulation experiment 3. (A) Boxplots illustrating the distribution of IC 50 estimates obtained with three different methods: Lassen plot and dose-occupancy 
plot (Lassen, blue). Likelihood estimation of occupancy and dose-occupancy plot (LEO, red) and likelihood estimation of affinity (LEA, green), across increasing noise 
in the plasma drug concentration (C P ) measurements. (B & C) The mean and standard deviation (SD) of the dose-occupancy plot estimates for (B) no noise in C P , 
and (C) maximum simulated noise in C P . 

the differences in IC 50 estimation presented here translate to a clinical 
setting, we present an example of a drug development experiment: 

Assume that we have a drug with a therapeutic window between 70 
and 80% occupancy. We want to administer a dose resulting in 75% oc- 
cupancy to hit this desired range. We therefore need to conduct a PET 

occupancy study to estimate IC 50 and Δmax to describe the relationship 
between the plasma drug concentration and target occupancy. The data 
from simulation experiment 2 can help inform how many subjects we 
want to include in that occupancy study. For each analytical method 

and iteration in the simulation experiment, we have calculated IC 5 0 and 
Δmax . With those parameter estimates, we can calculate the plasma drug 
concentration that corresponds to 75% occupancy. Using the true un- 
derlying parameter values, and assuming that the correlation between 
administered dose and plasma drug concentration is established with- 
out error, we can investigate whether the calculated plasma concentra- 
tion results in an occupancy within the therapeutic window. The results 
from this are illustrated in Fig. 4 . When using LEO to estimate IC 50 and 
Δmax , 10 subjects are sufficient to correctly predict a suitable dose in 
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Fig. 4. Illustration of the example introduced in the discussion. For each iter- 
ation in simulation experiment 2, we calculate the plasma drug concentration 
corresponding to 75% occupancy from the estimated parameter values. The fig- 
ure shows how large percentage of those plasma drug concentrations result in 
occupancies within the therapeutic window of 70–80% for different numbers of 
subjects in the study and for different analytical methods; Lassen (blue), LEO 

(red), and LEA (green). 

90.4% of the cases. By comparison, when the Lassen plot is used for 
quantifying outcomes, a sample size of 40 subjects is necessary to estab- 
lish a dose-occupancy relationships that results in a dose in the desired 
range for 89.9% of the cases. The same experiment was repeated for 
two other therapeutic windows, 20–30% and 45–55%, both resulting 
in approximately the same relative performance of the three methods 
(Supplementary Fig. 1). 

4.1. Simulation experiment 1: contribution of data points with low 

occupancy 

In the first experiment, we explored the degree to which the inclu- 
sion of additional subjects with very low occupancy improves the IC 50 

estimate. Six simulations were performed. The first had five subjects, 
and block scan occupancies in the range 53.3% to 80%. In each consec- 
utive simulation, a lower-occupancy data point was added. 

As expected, additional datapoints lead to more precise IC 50 esti- 
mates. For each additional subject, the improvement became smaller. 
Especially the last three datapoints ( Δ < 40%) had very little effect on 
the IC 50 error. This trend was apparent with all three analytical methods. 
Consequently, the recommendations from the European Association of 
Nuclear Medicine Drug Development Committee that ‘low’ occupancies 
should be included in these types of studies may not be justified. Rather 
than including datapoints at occupancies below 40%, if feasible with 
regards to potential drug effects, it is more valuable to aim at attain- 
ing occupancies larger than 40% for all subjects. In cases in which it is 
unclear whether the data conforms to a single-site binding model (i.e., 
the E max -model), the inclusion of lower-occupancy datapoints could be 
justified to confirm the shape of the dose-occupancy curve. However, 
in our experience, going below approximately 20% is associated with 
very unreliable occupancy estimates, as well as increased difficulty with 
accurately measuring the plasma drug concentration, limiting any con- 
clusions that can be drawn from such data. 

4.2. Simulation experiment 2: number of subjects 

In the second experiment, we examine the degree to which the IC 50 
estimate improves with increasing sample size. We performed simula- 
tions with datasets ranging from 5 to 45 subjects, while keeping the 
range of occupancies constant (40–80%). Within the range of typical 

sample sizes for PET pharmacokinetic competition studies, there is a 
linear relationship between the addition of subjects and the reduction 
in error. The decrease in error flattens out after approximately 20 sub- 
jects for the likelihood-based methods, and 30 subjects for the Lassen 
plot. Above this, the inclusion of additional subjects will likely rarely 
be justified when weighing the expected reduction in error against cost 
and radiation exposure. We do, however, recognize that the inclusion 
of 20–30 subjects is far beyond the regular sample sizes seen with this 
type of PET study. If the goal is to determine parameter values with 
the smallest possible error, the recommendation to include ‘as many 
points as possible’ ( Takano et al., 2016 ) could still hold true. Yet, in our 
opinion, including approximately 10 subjects should usually be suffi- 
cient, especially if the resulting data is analyzed with a likelihood-based 
method. 

4.3. Simulation experiment 3: noise in plasma drug level measurements 

In the third simulation experiment, we saw that the increase in IC 50 

error with increased error in the drug plasma level, C P , was more moder- 
ate for LEA than for LEO and the Lassen plot. It is difficult to determine 
the magnitude and nature of measurement error in C P noise in a practi- 
cal setting, but for a typical PET pharmacokinetic competition study it 
is likely that the magnitude is in the lower half of the range evaluated 
in this study. The error in C P is influenced by a number of parameters, 
including the kinetics of the drug, the sampling site ( Huang and Isoher- 
ranen, 2020 ), sampling materials ( Krischke et al., 2014 ), and analytical 
methods ( Pea et al., 2019 ). Guidelines from the US Food and Drug Ad- 
ministration ( Food and Drug Administration, 2018 ) and The European 
Medicines Agency ( European Medicines Agency, 2011 ) suggest that the 
accuracy and precision of a bioanalytical method should fall within a 
15% threshold. However, in a recent study in which drug spiked plasma 
samples were analyzed by 27 different European laboratories, only 54% 

of the 112 samples were within the 15% margins ( Pea et al., 2019 ). 
The ratio of the standard deviation to the mean in that study corre- 
sponded to a plasma noise scale factor of approximately 0.2. However, 
they also found a considerable bias, where 38% of the samples were 
overestimated, and only 8% were underestimated ( Pea et al., 2019 ). Be- 
cause we have simulated plasma drug concentrations with no bias, the 
standard deviations reported in that study are not necessarily directly 
comparable to our simulation experiment. 

With increased noise in C P, we saw not only wider distributions of 
estimated IC 50 values, but also a clear tendency to overestimate the IC 50 , 
especially for the two methods that use the traditional dose-occupancy 
plot. Fig. 3 B and 3 C, which display the mean estimated dose-occupancy 
relationship for each method at no noise and maximum noise respec- 
tively, clearly illustrate how the curves are underestimated at high er- 
rors in C P . 

4.4. Choice of analytical methods 

In all three experiments, we found that the likelihood-based ap- 
proaches lead to markedly lower errors in the IC 50 estimate, as com- 
pared to the Lassen plot. Simulation experiment 2 revealed that when 
using the Lassen plot to calculate occupancy, approximately four times 
as many subjects must be scanned to obtain errors comparable to the 
likelihood-based methods. 

It should be noted that the demonstrated performance of LEO and 
LEA relies on the presence of a test-retest dataset of ten subjects. In our 
experience, such datasets should be available for many, if not most, PET 

radioligands. If no test-retest dataset for the radioligand is available, it 
would probably still be less taxing on resources to first perform a test- 
retest study, and then apply likelihood-based methods. Based on the 
results in this study, one would still expect a better IC 50 estimate from 

scanning both ten test-retest subjects and ten baseline-block subjects, 
and subsequently analyzing the data with a likelihood-based method, 
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compared to scanning 20 baseline-block subjects, and calculating occu- 
pancies with the Lassen plot. The former strategy will not only lead to 
better occupancy parameter estimates but would also provide informa- 
tion on the test-retest variability of the radioligand. It should also be 
noted that, because the estimation of the covariance matrix improves 
with the size of the test-retest dataset, the likelihood-based methods 
would perform even better than demonstrated here if more than ten 
test-retest subjects were available ( Schain et al., 2018 ). Strategies to 
approximate the covariance structure of the data in the absence of a 
test-retest dataset also exist ( Naganawa et al., 2019 ). 

Throughout most of the simulations the two likelihood-based meth- 
ods LEO and LEA performed comparably. However, when very high 
noise in the plasma drug level measurements was simulated, LEA re- 
sulted in better IC 50 estimates than LEO. In fact, at these noise levels, the 
performance of LEO is comparable to that of the Lassen plot. Although 
it is clear that LEO provides improved occupancy estimates compared to 
the Lassen plot ( Schain et al., 2018 ), it seems that if the plasma drug con- 
centration is poorly estimated, the improved occupancy estimate does 
not lead to an improved estimation of the Emax model curve. 

4.5. Limitations 

Although LEA handles noise in the measurement of plasma drug con- 
centration better than the other approaches, the LEA log-likelihood func- 
tion does not explicitly account for the measurement error in C P , as it 
does for V T . This was not included in the model, in part because it would 
nearly double the number of model parameters in the LEA likelihood 
function. Also, the magnitude and nature of the measurement errors are 
not as easily accessible for C P as it is for V T . 

Both LEO and LEA build on the same assumptions as the Lassen plot 
and the dose-occupancy response curve; namely that occupancy and V ND 

are constant in all included brain regions. This assumption has faced 
some criticism ( Svensson et al., 2019 ). Also, all three methods assume 
that IC 50 and max occupancy are constant, not only across the brain, 
but also between subjects which are conditions that are not necessar- 
ily met. Voxel-wise application of the Lassen plot and E max model to 
[ 11 C]flumazenil scans of healthy humans, has suggested that there may 
be regional variation in vivo CVL-865 affinity for the GABA A receptor 
( de Laat et al., 2022 ). Assumptions could be violated for, e.g., radiotrac- 
ers sensitive to endogenous ligands or for comparisons between groups 
that have genetic differences in the protein structure which are asso- 
ciated with differences in the radioligand affinity to its target. These 
violations would also, however, apply to occupancy measures based on 
the Lassen plot or on BP ND . 

We have evaluated study designs and analytical methods in a sim- 
ulation framework based on the serotonin 2A receptor PET tracer 
[ 11 C]Cimbi-36. The error in the occupancy, and therefore also IC 50 , es- 
timates will depend on the characteristics of the PET radioligand, such 
as the test-retest variability and the signal-to-background ratio. For in- 
stance, we expect that a lower signal-to-background ratio would result 
in less well-determined estimates of occupancy. Our work focuses on 
V T -based estimates of occupancy and since the complexity in the deter- 
mination of a correct input function is prone to noise, one can expect 
V T ’s to yield less reliable occupancy estimates, through worse test-retest 
reliability ( Naganawa et al., 2019 ). We based our simulations on the ag- 
onist radiotracer [ 11 C]Cimbi-36 because it previously has turned out to 
generate excellent occupancy data ( Madsen et al., 2019 ). It is unknown 
if agonist radioligands, everything else being equal, generate different 
occupancy measures than antagonist radioligands, but we find it un- 
likely that simulations based on an antagonist radiotracer would have 
changed the outcome of our study. That is, our findings do most likely 
generalize to other radiotracers. 

This work addresses estimation of drug interaction parameters based 
on PET V T s. Because of its simplicity, many PET studies use regional 
BP ND estimates to calculate these parameters. Although this is a more 
straight-forward approach, it is not valid for radiotracers without a suit- 

able reference region. Further research is required to assess whether 
the results regarding study design (occupancy ranges and sample sizes) 
would hold true also for simulated BP ND values. 

5. Conclusion 

Our results suggest that when designing a PET occupancy study to 
quantify a drug’s interaction with its target from distribution volumes, 
it is not justified to administer drug doses corresponding to what can 
be expected to give less than 40% occupancy. We also demonstrate that 
within the range of typical PET sample sizes each additional subject 
clearly contributes to reduced IC 50 error. Excessive noise in determina- 
tion of the drug plasma levels leads to an underestimation of the dose- 
occupancy curve. Finally, we show in all our experiments that the max- 
imum likelihood-based methods are superior to the Lassen plot; where 
the likelihood-based methods require five subjects only, the Lassen plot 
will require 20 subjects to achieve the same IC 50 accuracy. 
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Supplemental material  
 

A. Simulation framework 
In this section we provide a detailed account of how we have simulated PET VT values for 

baseline-block, as well as test-retest, studies. As stated in the main manuscript, for each 

changed conditions 1000 unique baseline-block datasets, and 1000 unique corresponding test-

retest datasets, were simulated.  

 

A.1 Definition of covariance structure 

In order to generate simulated data with realistic noise properties, we used a test-retest (pre- 

and post- placebo intervention) dataset for the serotonin 2A radioligand [11C]Cimbi-36 (da 

Cunha-Bang et al., 2019). The dataset consists of 8 human subjects scanned before and after a 

placebo treatment. One subject was excluded, due to missing data in the first PET scan. Six 

brain regions of interests (ROIs) were included: thalamus, insula, anterior cingulate cortex, 

posterior cingulate cortex, orbitofrontal cortex, and occipital cortex. Plasma samples were 

collected for all subjects and used to calculate regional VT values with the two-tissue 

compartment model. The test-retest data was used to define a true covariance matrix, ∑, as Σ =

𝑐𝑜𝑣(𝑽𝑻𝒕𝒆𝒔𝒕 − 𝑽𝑻𝒓𝒆𝒕𝒆𝒔𝒕)/2, where 𝑽𝑻𝒕𝒆𝒔𝒕 and 𝑽𝑻𝒓𝒆𝒕𝒆𝒔𝒕 are 𝐾 × 𝑁 matrices holding the measured VT 

values in 𝐾 = 6 ROIs for 𝑁 = 7 subjects. This covariance matrix was then used to generate 

noise with a realistic covariance structure (see section 1.3 Generation of noise).  

 

A.2 Definition of true parameter values 

The [11C]Cimbi-36  dataset  was also used to define true VT values for the simulations.  

First, for each subject and ROI (those mentioned in section 1.1 Definition of covariance 

structure, and cerebellum), the mean VT across the two PET scans, was computed. Then, for 

each ROI, those values from all 7 subjects were pooled, and the mean and SD calculated. We 

then defined (i.e., hardcoded) true VT values in 10 simulated subjects, so that the mean and SD 

matched those calculated based on the test-retest dataset. These hardcoded values for VT are 

shown in Table 1.  
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Table 1: Overview of the hardcoded subjects and their distribution volume (VT) in each of the included brain regions. VND 

corresponds to Cerebellum VT. ACC: anterior cingulate cortex, PCC: posterior cingulate cortex, OrbC: orbitofrontal cortex, 

OccC: occipital cortex.  

Region 
 

Subject 

  
 

1 2 3 4 5 6 7 8 9 10 

Thalamus 
 

11.0 13.0 15.0 17.0 18.0 19.0 20.0 22.0 24.0 25.0 

Insula 
 

27.0 29.0 31.0 34.0 36.0 37.0 40.0 43.0 45.0 47.0 

ACC 
 

30.0 33.0 34.0 37.0 38.0 38.5 39.5 42.5 43.5 46.0 

PCC 
 

24.0 27.0 30.0 31.0 34.0 36.0 39.0 40.0 43.0 45.0 

OrbC 
 

27.0 31.0 35.0 38.5 39.5 40.0 41.0 44.5 48.5 52.5 

OccC 
 

24.0 27.0 29.0 31.0 33.0 34.0 36.0 38.0 41.0 43.0 

VND 
 

8.5 9.5 10.5 12.0 12.5 13.0 14.0 15.0 16.0 17.0 

 

 

In each simulation experiment, the true VT values were selected from these 10 subjects by 

random sampling. For the experiments in which more than ten subjects were simulated, all 

hardcoded subjects were included, and additional subjects were randomly sampled from those 

same 10. Cerebellum VT was used as an estimate of VND, and ROI-specific values for VS was 

calculated as 𝑉& − 𝑉'(. Thus, to set VT values at baseline and block condition for subject i, one 

subject was taken from Table 1, and 

 

2
𝑽𝑻,𝒕𝒓𝒖𝒆,𝒊𝒃𝒂𝒔𝒆 =	𝑉'(𝟏 + 𝑽𝑺,𝒊																																								

𝑽𝑻,𝒕𝒓𝒖𝒆,𝒊𝒃𝒍𝒐𝒄𝒌 = 𝑉'(𝟏 + 61 − ∆345
𝐶6

𝐶6 + 𝐼𝐶78
; 𝑽𝑺,𝒊

, 
 

(2) 

  

where 𝑽𝑻,𝒕𝒓𝒖𝒆𝒃𝒂𝒔𝒆  and 𝑽𝑻,𝒕𝒓𝒖𝒆𝒃𝒍𝒐𝒄𝒌  are 𝐾 × 1 vectors with VT values at baseline and block conditions,  

𝑽𝑺 is a	𝐾 × 1 vector with VS for each ROI (as derived from table 1), and 𝟏 is a 𝐾 × 1  vector 

of ones. Further, ∆345 and 𝐼𝐶78 are global parameters that remain constant in every simulation, 

and the plasma drug level, Cp, was set to result in a desired occupancy.  

 

A.3 Generation of noise 

Subsequently, noise was added to 𝑽𝑻,𝒕𝒓𝒖𝒆5 , using the covariance matrix ∑. The Cholesky 

factorization of ∑ produces an upper triangular matrix 𝚪𝑻, so that Σ = 𝚪𝑻𝚪. If B denotes a 

𝐾 × 1000 matrix with random numbers sampled from a normal distribution with mean = 0 and 
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SD = 1, it follows that 𝚪𝑻𝑩 will be a 𝐾 × 1000 matrix with covariance equal to 𝑐𝑜𝑣(𝚪𝑻𝑩) =

𝚪𝑻𝑐𝑜𝑣(𝑩)𝚪 = 	𝚪𝑻𝐈𝚪 = ∑. Thus, adding the columns of 𝚪𝑻𝑩 to 𝑽𝑻,𝒕𝒓𝒖𝒆5  creates a 𝐾 × 1000 

matrix, where each column holds one simulated measurement of VT values in all K ROIs, for 

subject i. This process ensures that each simulated set of VT values has unique noise and 

covariance structure according to ∑. However, it does not guarantee that the added noise will 

be of realistic proportions (e.g., a subject with low VT values likely has a low noise level as 

well). Therefore, the rows of 𝚪𝑻𝑩 was scaled with 9!,#$%&,',
:;

, where 𝑉&,<=>?,@ is the true VT value 

in ROI k for subject i. This scaling ensured that the added noise was proportional to the true 

VT, and constructed to be one at VT=34, because 34 was the mean VT value in the test-retest 

dataset. To create a complete dataset, this procedure was then repeated for all N subjects.  

 

A.4 Simulation of test-retest data for likelihood-based approaches 

The maximum-likelihood based estimators improve when a test-retest dataset of the 

radioligand is available (Schain et al., 2018). To assess their performance, test-retest data was 

also simulated in parallel to the baseline-block data, using the same method, but with the 

exception that ∆ was set to 0. Throughout the simulations, a test-retest sample size of 10 was 

used. The effect of varying the test-retest sample size has been assessed previously (Schain et 

al., 2018).  

 

𝑽𝑻,𝒕𝒓𝒖𝒆𝒕𝒆𝒔𝒕  and 𝑽𝑻,𝒕𝒓𝒖𝒆𝒓𝒆𝒕𝒆𝒔𝒕 were defined in the same manner as 𝑽𝑻,𝒕𝒓𝒖𝒆𝒃𝒂𝒔𝒆  in equation 7, and noise was 

added according to section 2.2.3. This simulated test-retest data was then used to estimate a 

covariance matrix to be used in the maximum-likelihood based estimators.  

 

In our previous assessment, it was clear that using the raw estimate of the covariance matrix is 

not advisable, as it would not be well determined from a small-sampled test-retest study. 

Instead, we propose to use a nonlinear shrinkage method to derive an estimate of ∑, denoted ∑B 

(Ledoit and Wolf, 2015; Schain et al., 2018). Throughout the simulations, ∑B was calculated 

with this method applied to the simulated test-retest data.  

 

B. Therapeutic Window Experiment 
In the main manuscript, the clinical implication of the difference in performance between 

methods is illustrated by an example, where for each method and sample size, we evaluated 

how many of the established drug concentration-occupancy relationships would lead to correct 
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dosing for a desired occupancy range between 70 and 80%. That same experiment was repeated 

for two other therapeutic windows; 20-30%, and 45-55%. The results for those therapeutic 

windows, together with the results for the therapeutic window presented in the main text (70-

80%), are presented in Supplementary figure 1 and 2.  

 
Supplementary figure 1: Illustration of results for the hypothetical drug experiment presented in the discussion, for three 
different therapeutic windows; 20-30% (A), 45-55% (B), and 70-80% (C). For each iteration in simulation experiment 2, we 
calculate the plasma drug concentration corresponding to the middle of the target therapeutic window, from the estimated 
parameter values. The figure shows how large percentage of those plasma drug concentrations result in occupancies within 
the therapeutic windows for different numbers of subjects in the study and for different analytical methods; Lassen (blue), 
LEO (red), and LEA (green). 
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Abstract  
The traditional design of PET target engagement studies is based on a baseline scan and one or more 
scans after drug administration. We here evaluate an alternative design in which the drug is administered 
during an on-going scan (i.e., a displacement study). This approach results both in lower radiation 
exposure and lower costs. Existing kinetic models assume steady state. This condition is not present 
during a drug displacement and consequently, our aim here was to develop kinetic models for analysing 
PET displacement data. 
 
We modified existing compartment models to accommodate a time-variant increase in occupancy 
following the pharmacological in-scan intervention. Since this implies the use of differential equations 
that cannot be solved analytically, we developed instead one approximate and one numerical solution. 
Through simulations, we show that if the occupancy is relatively high, it can be estimated without bias 
and with good accuracy. The models were applied to PET data from six pigs where [11C]UCB-J was 
displaced by intravenous brivaracetam. The dose-occupancy relationship estimated from these scans 
showed good agreement with occupancies calculated with Lassen plot applied to baseline-block scans 
of two pigs. In summary, the proposed models provide a framework to determine target occupancy from 
a single displacement scan.  
 
Keywords: Displacement, Drug Occupancy, Kinetic Modelling, PET, Synaptic Density 
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1. Introduction 
The discovery and development of drugs for the treatment of brain disorders is a challenging process 
requiring extensive resources, long timelines and significant investments.1 Over the past decades, 
imaging with positron emission tomography (PET) has become a valuable tool in CNS drug 
development. PET imaging with appropriate radioligands makes it possible to determine at an early 
stage whether a candidate drug penetrates the blood-brain barrier and binds to the target of interest in 
vivo. This helps to ensure that only suitable candidates will be advanced to subsequent trial phases, 
saving substantial resources.2  
 
In the traditional experimental set-up for determination of target occupancy, two (or more) PET scans 
are acquired in each subject using a radiotracer that binds to the same target as the drug. Usually, one 
scan is acquired at baseline (i.e., without drug), and subsequent scan(s) after administration of the drug. 
The difference between outcome measures from baseline and follow-up scans is then used to determine 
occupancy, i.e., the fraction of targets occupied by the drug.3   
 
The analysis of data from a PET occupancy study typically follows a three-step approach. First, a 
mathematical model (either based on arterial blood samples or a reference region) is used to quantify 
radiotracer uptake for each scan.4 Second, outcome measures from the different scans are combined to 
estimate the occupancy at the time of the post-drug scan.3,5 Last, all subjects are pooled in a occupancy 
plot (sometimes referred to as the Emax model) where the administered doses or plasma concentrations 
of the drug are related to the measured occupancies. This final step provides information of the drug’s 
affinity to the target, defined as the half maximum inhibitory concentration, IC50.  
 
This established methodology leaves room for improvement. First, relying on multiple PET 
measurements may introduce unwanted variance in the data. It is often difficult to design the experiment 
in such a way that the intervention is the only difference between the scans, as other (e.g., time-related) 
factors may affect radiotracer uptake.6–9 Second, the test person is exposed to multiple doses of ionizing 
radiation. Third, PET is a relatively expensive research tool, so a method that requires two scans for 
each data point places an unnecessary burden on the research budget.   
 
An alternative approach to determine drug occupancy is to administer the drug during an on-going PET 
scan and based on a single injection of radioligand. When the drug is administered, competitive binding 
causes displacement of the radiotracer. Deriving occupancy from such a study would result in reduced 
costs and lower radiation exposure, as each subject would need to undergo only one scan.  
 
Unfortunately, standard pharmacokinetic models, routinely used to analyse PET data, cannot be applied 
to data obtained from a displacement scan, as these models rely on the assumption of steady-state 
throughout a scan.10 This assumption implies that all model parameters remain constant over time, i.e., 
the modelled system is assumed to be time-invariant. This assumption is violated when a competing 
drug is administered during an on-going scan. To quantify displacement studies, a new class of 
pharmacokinetic models needs to be developed to incorporate the perturbation of the steady state. 
 
The idea to model competitive binding was already pioneered in the 1990s, when models to quantify 
release of endogenous dopamine were developed.11–14 Of the models relying on bolus injection, the only 
established model today is the neurotransmitter PET (ntPET), which has been used to evaluate 
dopamine release under various conditions.15–18 The ntPET, and variants thereof,19–23 rely on reference 
tissue models, i.e., quantification is performed using a reference region rather than an arterial input 
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function. For many radiotracers, true reference regions do not exist for, due to ubiquitous expression of 
the target, although some degree of specific binding in the reference region may be tolerable in clinical 
studies. In pharmacological intervention studies, however, specific binding in the reference region is 
particularly problematic, as blocking in both target and reference region can result in a complicated bias 
in the occupancy estimates.  
 
Here, we present a pharmacokinetic model that describes radiotracer kinetics during a displacement 
scan based on an arterial input function rather than a reference region. The model is based on one-tissue 
compartment model (1TCM) kinetics. The corresponding two-tissue compartment model (2TCM) is 
presented in section A of the supplementary material. Because the competing drug will perturb the 
system’s steady state, analytical solutions to the model equations do not exist. Instead, we present two 
alternative approaches: an approximate analytical solution that is derived by introducing assumptions 
on the accumulation of the competing drug in brain, and one numerical solution. The performance of 
the model and solutions are evaluated using simulations, and applied to pig [11C]UCB-J PET scans,24  
with brivaracetam displacement. 
 
2. Materials and methods 
 
2.1 Theory 
2.1.1 The occupancy model 
When radioligand displacement is induced by the introduction of a competing cold ligand (drug) it is 
assumed that the change is caused by reduction in specific radioligand binding only. This can be 
modelled by defining an occupancy function, 𝜕(𝑡), with 0 ≤ 𝜕(𝑡) ≤ 1, that acts on the concentration 
of available binding sites, Bavail. We typically have little knowledge about the drug concentration time 
profile in brain tissue in vivo. To set 𝜕(𝑡), we defined a set of conditions to be fulfilled. The occupancy 
model should 

1) be monotone non-decreasing 
2) be continuous and differentiable in all time points (i.e., a smooth growth) 
3) be 0 at the time of drug administration  

To fulfil the conditions above, we modified a model originally developed in agricultural sciences to 
predict crop growth rates.25 Our model for the occupancy function 𝜕(𝑡) is 
 

𝜕(𝑡) = 𝜕!"# *1 + $!%$
$!%$"

, * $%$#
$!%$#

,
$!%$#
$!%$" ,				𝑡& ≤ 𝑡 ≤ 𝑡' 	,    (1) 

 
where 𝜕!"# is the maximal occupancy reached (0 ≤ 𝜕!"# ≤ 1), 𝑡' is the end time of the growth (i.e., 
the time at which 𝜕!"# is reached), 𝑡& is the begin-time of the growth (i.e., the time of intervention), 
and 𝑡! is the time during which 𝜕′(𝑡) reaches a maximum (i.e., 𝑡! will control the steepness of 𝜕(𝑡) ). 
The function 𝜕(𝑡) will show a sigmoidal growth within the interval 𝑡& ≤ 𝑡 ≤ 𝑡', is exactly 0 at 𝑡 = 𝑡&, 
and can allow asymmetric or symmetric growth curves depending on the choices of 𝑡'  and 𝑡! . 
Examples of 𝜕(𝑡) are shown in Figure 1.  
 
2.1.2 Displacement model 
The 2TCM is the most common pharmacokinetic model used in quantification of brain PET data. In 
the 2TCM, the rate of exchange between compartments is determined by the constants K1, k2, k3 and k4 
(Figure 1). The rate constant k3 is linearly dependent on the concentration of available targets (𝐵"(")*), 
𝑘+ = 𝑓,-𝑘./𝐵"(")*.3,4 We assume that a reduction of available targets will have a negligible impact on 
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both the association rate constant 𝑘./  and the fraction of free tracer in the non-displaceable 
compartment, 𝑓,-. It follows that a time dependent reduction of available targets, i.e., (1 − 𝜕(𝑡))𝐵"(")* 
will affect k3 equally, i.e., 𝑓,-𝑘./ ∙ 41 − 𝜕(𝑡)5𝐵"(")* = (1 − 𝜕(𝑡))𝑘+. With this, the 2TCM can be 
modified to accommodate an increase in occupancy, starting at some time 𝑡& after radiotracer injection 
(details and equations provided in section A of the supplementary material). 
  
The pharmacokinetics of some radiotracers are reasonably well approximated by a 1TCM. In the 1TCM, 
the compartments corresponding to specific and non-displaceable uptake are collapsed into a single 
compartment, where rate constants K1 and k2 describe the transfer rate of radiotracer to and from that 
compartment. To modify the 1TCM to accommodate displacement, we adapted the framework of the 
simplified reference tissue model, where the compartments for specific and non-displaceable binding 
are presumed to latently reside within the model configuration (Figure 1).26 Setting equal the 
distribution volumes for the 1- and 2 tissue compartment configurations, a relationship between the 
apparent efflux rate constant, k2a, and k2-k4 from the latently present 2TCM configuration can be 
derived, 𝑘0" = 𝑘0 *1 + 1&

1'
,6 . This modification enables the introduction of an occupancy parameter to 

act on k3 in the 1TCM configuration. A schematic for the model is shown in Figure 1, and the 
corresponding differential equation becomes 
 
23(($)
2$

= 𝐾6𝐶7(𝑡) −
1)

6896%:($);<=*+
𝐶>(𝑡),      (2) 

 
where 𝐶7(𝑡)	is the metabolite corrected arterial plasma input function, 𝐵𝑃,- = 𝑘+ 𝑘?⁄ , and 𝜕(𝑡) as 
defined by  

𝜕(𝑡) =

⎩
⎨

⎧
0,																																																																											𝑡 < 𝑡&											

𝜕!"# *1 + $!%$
$!%$"

, * $%$#
$!%$#

,
$!%$#
$!%$" , 																					𝑡& ≤ 𝑡 < 𝑡' 		

𝜕!"# ,																																																																				𝑡 ≥ 𝑡' 												

    .  (3) 

 
As indicated in equation (3), the competing drug is assumed not to wash out during the course of the 
scan (see Discussion). 

 
Figure 1: The left panel shows the occupancy function, ∂(t) as defined in Eq.1, for 3 different choices of te. The 
middle panels show schematic diagrams of the intervention models for 2TCM and 1TCM, respectively. The right 
panels show time-activity curves originating from each compartmental model using the choices for ∂(t) depicted 
in the left panel.   

2.1.3 The single step solution 
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In contrast to the standard kinetic models, equations (2) describe a time-variant system, and common 
tools for finding analytical solutions are not strictly defined. To find solutions for the differential 
equations (2), we placed some restrictions on the occupancy function, 𝜕(𝑡). 
 
For a drug acting rapidly on the target, i.e., quickly reaching the maximal occupancy attainable at the 
administered dose, we assume that 𝜕(𝑡) takes the form of a step function, i.e.,  
 

𝜕(𝑡) = @
0,									𝑡 ≤ 𝑡@
𝜕!"# , 𝑡 > 𝑡@

 . 

 
With this simplification, we can partition the PET time-activity curve (TAC) into two segments (i.e., 
before and after the time at which the drug is assumed to act on the system, ts) and apply the 1TCM 
separately to each segment. We assume that the rate constants are the same for the two segments, but 
the differential equation for the segment after the step (𝑡 > 𝑡@) will come with non-zero initial values. 
The initial values for the 𝑡 > 𝑡@ segment are set to the values at the endpoint of the 𝑡 ≤ 𝑡@ segment.  
  
Let 𝐶>A(𝑡) and 𝐶>6(𝑡) denote the tissue concentrations before and after administration of the competing 
drug. The equations describing 𝐶>A(𝑡) are the standard differential equations for the 1TCM (see equation 
2, with 𝜕(𝑡) = 0). Setting 𝜏 = 𝑡 − 𝑡@, the differential equation for 𝑡 > 𝑡@ becomes 
 

C
23(

,(B)
2B

= 𝐾6𝐶7(𝜏 + 𝑡@) −
1)

68(6%:"-.)<=*+
𝐶>6(𝜏)	

𝐶>6(𝑡@) = 𝐶>A(𝑡@)																																																						
,   𝜏 > 0. 

 
The solution to these differential equations becomes 
 

𝐶>(𝑡) = D
𝐾6𝐶7(𝑡)⨂𝑒

% /)
,012*+

$	,																																																																																						𝑡 ≤ 𝑡@

𝐾6𝐶7(𝑡)⨂𝑒
% /)
,0(,%4"-.)12*+

($%$6) + 𝐶>A(𝑡@) ∙ 𝑒
% /)
,0(,%4"-.)12*+

($%$6),			𝑡 > 𝑡@
     (6) 

 
Fitting the single step solution thus means estimating a total of 4 model parameters: K1, k2 and BPND 
and 𝜕!"#. In our implementation, we also included the fractional blood volume (vB), and the time at 
which the occupancy step occurs (𝑡@), as free parameters. The reason to include 𝑡@ as a free parameter 
is to reduce errors caused by setting 𝜕(𝑡) to be a step function: by allowing the model to perform the 
step later than the time of intervention we submit that a better description of the data can be obtained. 
The equations for the single step solution of the 2TCM is provided in the supplementary material 
(section A.2). 
 
2.1.4 The Numerical Solution 
The Euler Forward method was used to obtain a numerical solution to equation (2).  
Starting at known initial conditions, each next point on the model curves is calculated by,  
 
𝐶(𝑡/) = 𝐶(𝑡/%6) + ℎ𝐶C(𝑡/%6),  
 
where ℎ = 𝑡/ − 𝑡/%6	(i.e., linearity is assumed in the small time interval 𝑡/%6< t < tn ). Insertion of the 
model equations in (2) gives 
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𝐶>(𝑡/) = ℎ ∙ 𝐾6𝐶7(𝑡/%6) + H1 −
D∙1)

6896%:($7%,);<=*+
I 𝐶>(𝑡/%6). 

 
The occupancy function shown in equation 3 (Figure 1) was used for 𝜕(𝑡/), and h was set to 0.5 
seconds. The corresponding numerical solution for the 2TCM is presented in the supplementary 
material (section A.3).  
 
2.1.4 Fitting of multiple regions simultaneously  
As seen in equation (2), the free model parameters 𝑘0, 𝜕(𝑡), and 𝐵𝑃,- appear only as a ratio, and as 
such, each of these parameters are free to take any value as long as the term  1)

(68:($))<=*+
	results in an 

adequate fit. Consequently, unless some constraints are placed in the optimization, neither of these 
parameters can be properly identified (see supplementary material, section B and supplementary figures 
1 and 2). 
 
In PET kinetic modelling, it is common to assume that the non-displaceable distribution volume (VND) 
is the same across all included brain regions. In dose-occupancy studies, it is also common to assume 
that the fractional occupancy is the same across the brain. In fact, these two assumptions form the basis 
for many quantification strategies, including all reference tissue modelling as well as the Lassen Plot.27 
We therefore constructed our optimizer so that 𝑉,-  and 𝜕!"#  are shared across all included brain 
regions, whereas the other model parameters, i.e., 𝐾6, 𝐵𝑃,- ,	and 𝑣<, are free to vary across the brain. 
For the single step approach, the estimated time at which the model performs the jump, ts, was also 
treated as a global parameter. Similarly for the numerical solution, the estimated time at which the 
growth of the occupancy ends, te, was estimated globally. For both methods, we used a nested approach 
to fit the models to the data. In an outer layer, the global parameters (VND, ∂max, te/ts) were estimated 
with non-linear least squares. For each iteration of the outer layer, the remaining model parameters (K1, 
VND, vB) were fitted for each ROI separately. More details about models and implementation can be 
found in the supplementary material (section C).  
 
2.2 Simulations 
 
2.2.1 Generation of noise-free time activity curves 
In simulations, we attempted to mimic the behaviour of [11C]UCB-J.24 For Cp(t), we used an arterial 
input function measured from a pig scan (baseline scan of experiment 1 in Table 1), where the measured 
activities after the peak were fitted with a tri-exponential function. The tissue rate constants were taken 
from table 1 in (Finnema et al., 2018)28, and set to result in VND = 4, and VT ranging between 14.2 and 
22.4. We simulated TACs for seven regions: putamen, temporal cortex, occipital cortex, frontal cortex, 
thalamus, cerebellum, and hippocampus.  
 
To evaluate the performance of our methods, we simulated displacement TACs with two different types 
of drugs: one fast and one slower. In both cases, the time of injection of the drug was set at 60 minutes 
after radiotracer administration. For the fast-acting drug, the time te at which the drug reached it 
maximal occupancy was set to 65 minutes, for the slow-acting drug, te was set to 90 minutes. Scan 
durations were set to 150 minutes. For each of the drugs, we simulated displacement scans at three 
different occupancies (∂max): 25%, 50% and 75%. For each of the six different cases (combination of 
drug and occupancy) we simulated 1000 unique scans, with noise added as explained in 2.2.2 
Generation of noise. To generate the TACs we used the Euler Forward method and the differential 
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equation for the 1TC displacement model (Equations 2 and 3). Some example TACs with different te 
are shown in Figure 1.  
 
2.2.2 Generation of noise 
To create realistic noise, a previously proposed noise-model was used that allows for time-dependent 
variance.29,30  
 

𝐶/.)@F(𝑡1) = 𝐶$GH'(𝑡1) ∙ L1 + 𝛼N
'8$/

"9:

3$;<!($/)I$/
∙ 𝐺(0,1)P, 

 
where 𝜆 is the decay constant for the isotope (in this case 11C), 𝑡1!)2 and  Δ𝑡1 are the mid-time and 
duration of frame k, respectively, and 𝐺(0,1)  is a number sampled from a Gaussian distribution 
centered on 0 with a SD of 1. The scaling factor 𝛼 was set to 5 in order to create noise on par with that 
of real experiments. Figures of example TACs at different noise levels can be found in the 
supplementary material (supplementary figures 3 and 4). 
 
2.3 PET experiments  
2.3.1 Experimental procedure 
[11C]UCB-J was largely synthesized as in Nabulsi et al., 2016,24 with some modifications.31 All animal 
experiments conformed to the European Commission’s Directive 2010/63/EU and the ARRIVE 
guidelines. The Danish Council of Animal Ethics had approved all procedures (Journal no. 2016-15-
0201-01149). Six female domestic pigs (crossbreed of Yorkshire × Duroc × Landrace, mean weight 
23.3 [range: 18-27] kg) were fully anesthetized and scanned using [11C]UCB-J administered as a bolus 
injection (injected dose: 441 [range: 344-528] MBq; injected mass: 0.69 [range: 0.08-2.77] μg). Two 
of the pigs (experiments 1 and 2) underwent three scans, i.e., baseline (120 min), displacement (150 
min) and blocking (120 min) scans, on the same day. Brivaracetam (Briviact®, 10 mg/mL, UCB 
Pharma, Belgium) was administered i.v. during the displacement scan and served as a traditional 
blocking agent in the third scan, which was started approximately 120 min after the brivaracetam 
intervention. The remaining four pigs only underwent displacement scans. In all displacement scans, 
brivaracetam was administered i.v. over 20 seconds, 60 min after radioligand injection. A list of all 
experiments is shown in Table 1.  
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2.3.3 PET data processing 
PET scans were acquired on a High Resolution Research Tomograph (HRRT; Siemens, USA) and 
reconstructed using OP-3D-OSEM, including modelling of the point-spread function, with 16 subsets, 
10 iterations and all standard corrections.32 Data was binned into the following time frames: 6 x 10, 6 x 
20, 3 x 30, 9 x 60, 8 x 120, 4 x 180, 2 x 240, 1 x 360, 1 x 420, 1 x 600, 1 x 900 and 1 x 1680 s for the 
120 min scans, and 6 x 10, 6 x 20, 6 x 30, 6 x 60, 4 x 120, 14 x 300, 8 x 150 s and 8 x 300 s for the 150 
min scans. Attenuation correction was performed using the MAP-TR μ-map.33 Definition of brain 
regions of interests (ROIs) was performed using a dedicated pig brain template.34 The seven regions 
from the simulation experiment were also used here: putamen, temporal cortex, occipital cortex, frontal 
cortex, thalamus, cerebellum and hippocampus.  
 
2.3.4 Blood and plasma analyses 
Radioactivity in arterial whole blood was measured continuously for the first 30 min of each scan using 
an Allogg ABSS autosampler (Allogg Technology, Sweden). Arterial blood was manually drawn at 3, 
8, 10, 15, 30, 45, 59, 61, 65, 75, 90, 105, 120 and 150 min for measuring radioactivity in whole blood 
and plasma using a gamma counter (Cobra, 5003, Packard Instruments, Meriden, USA) that was cross-
calibrated against the HRRT. Radio-HPLC was used to measure radioligand parent fractions.35 A more 
detailed account of the blood and plasma analyses can be found in the supplementary material (Section 
D).  
 
In the baseline scan of experiment 2, (see Table 1), the parent fraction could not be estimated due to a 
technical failure. The parent fractions from the displacement and blocking scans conducted in the same 
animal were, however, very similar (absolute difference averaged across time was 6.0±4.1%, and 
difference in AUC was 2%). Therefore, for the baseline scan in experiment 2, the mean parent fraction 
from the corresponding displacement and blocking scans was used.  
 
The concentration of brivaracetam in arterial plasma was analysed using UPLC-MS/MS (Filadelfia 
Epilepsy Hospital, Denmark). During the displacement scans seven blood samples (at approximately 1, 

Table 1 Overview of pig PET experiments. 
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5, 15, 30, 45, 60 and 90 min after brivaracetam injection) were collected for this purpose, and during 
the block scans five samples (at approximately 3, 15, 45, 75 and 90 min after scan start) were collected. 
 
3. Results 
3.1 Simulation results 
Figure 2 summarises results from the simulation experiment. It shows that occupancy estimation 
improves both with increasing drug speed and with increasing dose. The performance of the two 
methods (numerical solution and single-step approximation) were comparable throughout, especially 
for the higher occupancies, where the histograms are almost identical. While the occupancy estimates 
are approximately normally distributed for the higher occupancies, the distributions of estimates are 
slightly skewed for both methods at 25% occupancy. At this lower occupancy, there is also a bigger 
difference between the distributions, with the single-step solution, unlike the numerical solution, 
showing a slight tendency to overestimate ∂max (for the fast drug, median ∂max estimates were 25.2% 
with the numerical solution and 30.2% with the single step solution). Corresponding results for VND and 
VS are found in supplementary figures 8 and 9, respectively.  

 
Figure 2: Results from simulating fast- (te = 5 min) and slow-acting (te = 30 min) drugs, displacing [11C]UCB-J binding. Each 
panel shows histograms of occupancy (∂max) estimates from the numerical solution (green) and single-step approximation 
(red). In each panel, the dashed black line corresponds to the true value for ∂max.  

 
3.2 Displacement models applied to real data 
3.2.1 Model fits 
The 1TC displacement model was consistently able to describe the measured TACs using both the 
single-step approximation and the numerical solution. Figure 3 shows model fits to temporal cortex 
TACs, with both methods, for the largest and the lowest dose experiments. For the numerical solution, 
fits to all TACs, with residuals, for the same two scans can be found in supplementary figures 13 and 
14, and normalized residuals for all six pig scans can be found in supplementary figure 15.  The average 
± SD total distribution volume in temporal cortex, across all displacement scans was 20.2 ± 3.7 mL/cm3 
for both methods. The occupancies ranged from 41% to 86%.  
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Figure 3: Displacement model fits (solid lines) to [11C]UCB-J temporal cortex TACs (dots) from two pig scans in which 
brivaracetam was administered i.v. 60 minutes after radiotracer injection. The dashed lines show  model curves in the absence 
of displacement. These curves were generated from the estimated model parameters, with occupancy set to zero. 

 
3.2.2 Comparison with Lassen plots 
Experiment 1 and 2 each had a baseline scan before and a blocking scan after the displacement scan. 
These scans were analysed using the traditional 1TCM, and occupancies were estimated using the 
Lassen plot.5,27 For both experiments, the Lassen occupancies in the block scans were lower than the 
estimates from the displacement scans (see figure 4, left panel). However, the plasma drug 
concentrations were also lower during the block scans, and the outcome of the Lassen-plot fit well with 
the dose-occupancy relationship estimated from the displacement scans (see dose-occupancy plots in 
figure 4).  The Lassen-VNDs also showed good agreement with the ones calculated with the displacement 
model. For the high-dose pig scan, the Lassen plot returned a VND of 2.08, while the displacement model 
returned a VND of 1.85 with the numerical solution and 2.15 with the single step solution. For the low-
dose pig scan, the Lassen-VND was 7.46, while the displacement model returned VND estimates of 7.47 
with both solutions. 
 
3.2.3 Dose-occupancy model 
Figure 4 shows occupancies (𝜕!"#) estimated from the displacement models for all pigs, plotted 
against the maximal plasma level of brivaracetam following its injection (Cbriva). These occupancies 
could be well described by the Emax model, 𝜕!"# = ∆!"#𝐶&G)(" (𝐶&G)(" + 𝐼𝐶JA)⁄  , where IC50 is the 
drug’s half maximal inhibitory concentration, and ∆!"# is the maximal attainable occupancy for the 
population. The estimated values for ∆!"#were 87.3% for the numerical solution, and 87.6% for the 
single step approach. The corresponding values for IC50 were 1.26 μg/mL and 1.27 μg/mL for the 
numerical solution and single step, respectively.  
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Figure 4: Results from pig experiment. The first tile show occupancy estimates for the two pigs that underwent both 
displacement and baseline-block scans. The Lassen plot occupancy estimates (from the block scan) are shown in blue, and the 
occupancy estimates from the displacement scans are shown in green (numerical solution) and red (single step solution). The 
two other tiles show the estimated occupancies plotted against peak plasma brivaracetam concentrations for the numerical 
solution and single step solutions, respectively. In both, the Lassen-occupancies plotted against the peak plasma value during 
the block scans are also included.  

 
4. Discussion 
In this study, we present a pharmacokinetic model capable of describing PET time-activity curves after 
a pharmacological intervention. We have developed a generic and flexible model that allows for 
increasing occupancy, and that is incorporated into the standard PET compartmental models, to describe 
a displacement of the radiotracer during the scan. Because the differential equations are time-variant, 
we present two new approaches for quantification of PET data with arterial input functions. In the single 
step solution, the effect of the drug intervention is approximated to be instantaneous, and the system 
can thus be assumed to be time-invariant both before and after the effect of the intervention occurs. The 
“extended simplified reference tissue model” (ESRTM) is based on the same idea, although it relies on 
a reference tissue rather than an arterial input function.36 The other solution is to solve the model 
differential equations using numerical methods. Here, we used the Euler Forward method together with 
a monotone, continuous and differentiable occupancy model.  
 
The present results suggest that performing displacement scans is a viable alternative to the traditional 
two-scan setup to determine target engagement. We demonstrate the usefulness of the methods by 
displacing [11C]UCB-J with brivaracetam in pigs. Experiments 1 and 2 showed that the displacement 
model resulted in similar occupancy estimates as those obtained using the traditional Lassen plot. The 
estimated occupancies could be well described by the Emax model, which resulted in IC50 estimates of 
1.26 μg/mL for the single step method and 1.27 μg/mL for the numerical solution. The Emax model 
assumes that the drug concentration in plasma is constant but plasma brivaracetam changes rapidly 
following intravenous injection, and it is not entirely clear how to best map occupancies to such 
dynamic plasma levels. Because we saw a very rapid displacement of [11C]UCB-J, we used peak plasma 
values, i.e. plasma values immediately following injection, as they align temporally to radiotracer 
displacement. In basement-block experiments, where the drug is normally administered some time 
before the block scan, the plasma drug concentration will remain relatively constant during the scan. In 
these cases, the plasma concentration either at the start of the scan, the end of the scan, or the mean of 
the two, is often used in the Emax model.37 For comparison, we re-ran the dose-occupancy analysis 
using mean plasma concentrations during each scan in place of the peak plasma values. This resulted 
in an IC50 of 0.47 μg/mL, for both the numerical solution and single-step approximation. This is nearly 
identical to the brivaracetam IC50 reported by Finnema and colleagues (0.46 μg/mL) from a [11C]UCB-
J baseline-block experiment in humans.38 
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When performing drug development studies, it is common practice to use a range of doses to better 
characterise the dose-occupancy relationship. The displacement models presented here do not 
necessarily provide good estimates in the low occupancy ranges (~25%, or lower). At 25% occupancy, 
there is also a large uncertainty in the VND estimate (supplementary figure 8), and in several cases 
(especially for the numerical solution) it hits the lower bound at VND = 0. Due to a strong positive 
correlation between ∂max and VND (see supplementary tables 1 and 2, and supplementary figures 11 and 
12), this leads to the apparent negative bias in occupancy that we see in figure 2. Difficulties in 
determining low occupancies has also been reported with the Lassen plot.39–41 A possible solution is to 
fit multiple subjects simultaneously in a multilevel pharmacokinetic modelling framework, allowing 
the model to differentiate between displacement and normal scans.42 This could improve the occupancy 
estimates, even if normal and displacement scans were conducted in different research subjects. Such 
an approach could be particularly valuable if the displacement is small, e.g., when using a behavioural 
task to elicit neurotransmitter release rather than a pharmacological challenge.   
 
The assumption of instantaneous occupancy (single step) that we have employed to allow the model to 
be solved analytically has already been shown to be a useful one for reference region quantification of 
displacement scans.36 We emphasize that although the single step solution involves splitting TACs into 
two segments, each segment is not fitted independently. All rate constants are constrained to be constant 
throughout the scan, and they are estimated by fitting the entire TAC.  
 
The objective of introducing a numerical solution, accounting for the time course of occupancy, was to 
allow better quantification of occupancy for slow-acting drugs. Unexpectedly, the two approaches 
performed comparably across all experiments, even for the simulated slower drug (te = 30 min). In 
addition to the presented data, we simulated scans with a much slower drug (te = 120 min, see 
supplementary figure 5), where the final occupancy was reached 30 min after the last acquired data. 
Even in this case, we saw no advantage of the numerical solution over the single step simplification. In 
fact, both approaches performed poorly in this scenario.  
 
The performance of the single step solution presented in this paper relies on using a relatively high time 
resolution (0.5 s frequency) in the convolution step. In our experience, this is a much shorter step size 
than what is usually used when solving compartment models. Consequently, the single step approach 
is computationally relatively heavy, and requires approximately 30 times longer run-time than the Euler 
Forward-based numerical solution.  
 
Another advantage of the numerical approach is that it allows flexibility. In this study, we have used a 
monotonic increasing function to explain the time course of occupancy. These assumptions appear to 
be reasonable for the [11C]UCB-J pig scans with brivaracetam intervention. However, depending on 
factors like the drug, radiotracer, and experimental design, in some cases it might be preferable to use 
a different type of function to describe the occupancy. For instance, the numerical approach allows for 
an occupancy model where both drug uptake and washout happen during the scan. We chose the 
occupancy model in (equation 1) because it is a continuous and differentiable function that allows some 
key parameters to be estimated. In reality, we expect that the increase in occupancy in the time following 
a drug intervention is at first rapid, and then slows down as fewer binding sites remain available. In a 
recent study, Naganawa and colleagues present a similar displacement model for [11C]UCB-J. In that 
study, the rate constants defining the drug’s uptake and clearance in tissue were estimated, together 
with the radioligand’s rate constants.43 While this model more accurately reflects the underlying 
competition at the SV2A binding sites, the authors show that parameter identifiability becomes 
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challenging with a model of that complexity. The approach presented in the current study is thus a 
pragmatic solution to derive occupancy estimates from a single displacement scan. 	
 
We are confident that the simulated TACs have a level of noise that is realistic to [11C]UCB-J. The level 
of noise could however vary for different radiotracers. In supplementary figures 6 and 7 we show 
histograms of ∂max estimates at different levels of noise. With increasing noise, the precision of the 
parameter estimation is reduced, but the estimates remain unbiased. With no noise added, both solutions 
to the model consistently return the true ∂max value. 
 
In both solutions to the model, the time of the intervention (tb) is treated as a known parameter and is 
not fitted. In the presented results, the models were solved with the true tb values. In reality, it might be 
difficult to identify the exact moment when the drug reaches its target. We therefore applied the models 
to some of the simulated data with wrong values for tb (1 and 5 minutes before and after the true tb). For 
both solutions to the model, the ∂max and VND were generally unaffected by the different values for tb 
(supplementary figure 16).  
 
A limitation of the models is that they only consider a change in available binding sites. 
Pharmacological interventions may also affect perfusion, which could influence some model 
parameters (e.g., K1 for highly permeable radiotracers). If the intervention causes, for instance, an 
increase in perfusion, the models presented here are likely to underestimate the occupancy due to K1 
being fixed throughout the scan. Further work is needed to develop models that can account for other 
changes than a reduction in Bavail induced by the pharmacological challenge, like some of the existing 
reference region based methods do.14,19 Also, similar to available methods for baseline-block scans, the 
model does not account for specific binding of the radiotracer to the target, assuming that it is only 
present in tracer doses. Depending on the specific activity of the radiotracer, this could lead to some 
bias.  
 
Although we derived displacement versions of both the 1TCM and 2TCM (see supplementary material, 
section A.), we only considered a tracer that can be described by 1TC kinetics. Additional work is 
needed to evaluate the performance of the 2TC displacement models, as well as reference tissue 
implementations.  
 
A limitation of the simulation experiments is that, for the numerical solution, the same model is used 
both to simulate the data and solve it. This could offer an unfair advantage to the numerical solution 
over the single step approximation, but our pig experiments confirm that the two approaches perform 
well, and they are in agreement with the Lassen plot outcome. We also limited our case to a drug that 
after intravenous injection shows a very immediate interaction with the target. Future studies must show 
if the two methods perform equally well for more slow-acting drugs. For solving the proposed 
displacement model, both with the numerical approach and the analytical approximation, it is necessary 
to pool data from several brain regions. This is standard for methods of estimating occupancies in the 
absence of a reference region.5,27,39–41  
 
In conclusion, drug displacement PET scans constitute a promising alternative to determine occupancy, 
compared to baseline and follow-up studies. The kinetic models presented here enable estimation of 
occupancy from a single displacement scan, thereby obviating the need for two consecutive scans. This 
allows the number of scans required for target engagement studies to be substantially reduced, leading 
to lower radiation exposure and experimental costs, while also limiting the variation of biological and 
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experimental factors. To facilitate the implementation of these models in other research centres, the 
MATLAB code is freely available for download at https://github.com/Gjertrud/ISI. 
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A. Displacement model for 2TCM kinetics 
 

A.1 Operational equations for the displacement model based on 2TCM kinetics  
In the 2TCM, the rate of exchange between compartments is determined by the constants K1, 
k2, k3 and k4 (Figure 1). The rate constant k3 is linearly dependent on the concentration of 
available targets (𝐵!"!#$), 𝑘% = 𝑓&'𝑘()𝐵!"!#$.1,2 We assume that a reduction of available 
targets will have a negligible impact on both the association rate constant 𝑘() and the fraction 
of free radioligand in the non-displaceable compartment, 𝑓&'. It follows that a time dependent 
reduction of available targets, i.e., (1 − 𝜕(𝑡))𝐵!"!#$ will affect k3 equally, i.e., 𝑓&'𝑘() ∙
,1 − 𝜕(𝑡)-𝐵!"!#$ = (1 − 𝛿(𝑡))𝑘%. With this, the 2TCM can be modified to accommodate an 
increase in occupancy, starting at some time 𝑡* after radioligand injection. A schematic 
diagram of the model is shown in Figure 1, with the following differential equations: 
 

/
+,!"(.)

+.
= 𝐾0𝐶1(𝑡) − ,𝑘2 + ,1 − 𝜕(𝑡)-𝑘%-𝐶&'(𝑡) + 𝑘3𝐶4(𝑡)

+,#(.)
+.

= ,1 − 𝜕(𝑡)-𝑘%𝐶&'(𝑡) − 𝑘3𝐶4(𝑡)																																					
	,                                     (s1) 

 
where 𝐶1(𝑡)	is the metabolite corrected arterial plasma input function, 𝐶4 and 𝐶&' are 
radioligand concentrations in the respective compartments, and 
 

𝜕(𝑡) =

⎩
⎨

⎧
0,																																																																											𝑡 < 𝑡*											

𝜕5!6 :1 + .$7.
.$7.%

; : .7.&
.$7.&

;
'$('&
'$('% , 																					𝑡* ≤ 𝑡 < 𝑡8 		

𝜕5!6 ,																																																																				𝑡 ≥ 𝑡8 												

    .              (s2) 

 
 
A.2 Single step approximation for the 2TCM 

Let 𝐶!"(𝑡)and 𝐶!#(𝑡) denote tissue concentrations before and after administration of the 
competing drug, respectively. The equations describing 𝐶&'9 (𝑡) and 𝐶:9(𝑡) are the standard 
differential equations for the 2TCM. By introducing a new time variable, 𝜏 = 𝑡 − 𝑡4, the 
differential equations for 𝑡 ≥ 𝑡4 become 
 

⎩
⎪
⎨

⎪
⎧	+,!"

) (;)
+;

= 𝐾0𝐶1(𝜏 + 𝑡4) − (𝑘2 + (1 − 𝜕5!6)𝑘%)𝐶&'0 (𝜏) + 𝑘3𝐶:0(𝜏)				
+,#

)(;)
+;

= (1 − 𝜕5!6)𝑘%𝐶&'0 (𝜏) − 𝑘3𝐶:0(𝜏)																																																			
𝐶&'0 (𝑡4) = 	𝐶&'9 (𝑡4), 𝐶:0(𝑡4) = 	𝐶:9(𝑡4)																																																						

, 𝜏 ≥ 0                 (s3) 

 
 
Following the nomenclature provided in Gunn et al., 3 the analytical solution for total activity 
in tissue, 𝐶<(𝑡) = 𝐶&'(𝑡) + 𝐶:(𝑡), becomes 
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𝐶<(𝑡) = 
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(s4) 
 
Expressions for 𝜙#, 𝜃#, Δ, 𝐶&'9 (𝑡*) and 𝐶:9(𝑡*) are,  
 

𝐶!"# (𝑡$) = 	 '𝐻𝑁𝐷⨂𝐶𝑝('𝑡𝑏(  
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where,  
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A.3 Numerical solution for the 2TCM 

The Euler Forward Numerical solution for the 2TCM (i.e., equation s1) becomes 

K
𝐶&'(𝑡)) = ℎ𝐾0𝐶1(𝑡)70) + :1 − ℎ,𝑘2 + ,1 − 𝜕(𝑡)70)-𝑘%-;𝐶&'(𝑡)70) + ℎ𝑘3𝐶4(𝑡)70)

𝐶4(𝑡)) = (1 − ℎ𝑘3)𝐶:(𝑡)70) + ℎ,1 − 𝜕(𝑡)70)-𝑘%𝐶&'(𝑡)70)																																															
. 

(s5) 
 With the occupancy function 𝜕(𝑡) according to equation s2.  
 

B. Rationale for simultaneously fitting several ROIs 
As mentioned in the main text (section 2.1.4), the model parameters 𝑘(, 𝜕(𝑡), and 𝐵𝑃)* appear 

only as a ratio in the proposed model, and as a result, these parameters cannot be uniquely identified 

when the model is applied to a single TAC. This is illustrated in Supplementary figure 1, which shows 

surface plots of the model objective function for varying values for VND and occupancy, when the model 

is applied to each region separately. For all regions, there is a line of combinations of VND and occupancy 

that yield similarly low values of the objective function. Supplementary figure 2 shows the profile of 

the objective function through those lines. The profile does not have a clear global minimum for any of 

the regions. However, when all the profiles are combined, we get a clear minimum at VND = 4, which is 

the true value for VND in the simulations.  

 

 

 
Supplementary figure 1: Objective function of model applied to a single TAC, plotted against VND and ∂max (occupancy). 

ROIs are (left to right, top to bottom) putamen, temporal cortex, occipital cortex, frontal cortex, thalamus, cerebellum, and 
hippocampus. The final plot (bottom right) is the average across all ROIs. 
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Supplementary figure 2: Line profiles through the valleys of the objective functions in Supplementary figure 1. ROIs are (left 
to right, top to bottom) putamen, temporal cortex, occipital cortex, frontal cortex, thalamus, cerebellum, and hippocampus. 

The final plot (bottom right) is the average across all ROIs. 

 

C. Implementation of models 
All analyses were performed in Matlab (version 9.10). For both solutions to the model the 

fitting was run with a nested approach, where the outer layer function fitted the global 

parameters (∂max, and VND for both solutions, te for the  numerical solution, and ts for the single 

step approximation). For each iteration of the outer function, the ROI-specific parameters (VS, 

K1 and vB) were fitted for each ROI separately. In both layers of the algorithm, lsqnonlin was 

used to fit the model to the data. ∂max and vB were constrained to be between 0 and 1. te and ts 

were constrained to be higher than (after) tb. All other parameters were constrained to be 

positive.  

 

Matlab code for both models is freely available and can be found at 

https://github.com/Gjertrud/ISI. 
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D. Blood and plasma analyses 
The blood samples were centrifuged (2246xg for 7 min at 4°C), and the extracted plasma was filtered 

through a 0.45 µm syringe filter (Whatman GD/X 13 mm, Cytiva) and subsequently diluted 1:1 with 

20 mM Phosphate buffer and 5 mM sodium-1-decanesulfonate pH 7.2 with 2% isopropanol. Samples 

were analysed in a fully automated column-switching HPLC system (UltiMate 3000, Thermo Fisher 

Scientific) connected to a radio-HPLC detector (PosiRam Model 4, LabLogic Systems).4 The HPLC 

system was equipped with a small extraction column (Shimpack MAYI-ODS 30x4.6 mm, Shimadzu 

Corporation) combined with an analytical column (Onyx Monolithic C18 50x4.6 mm, Phenomenex). 

The extraction mobile phase consisted of 100% of phosphate buffer (composition mentioned above), 

while the elution mobile phase consisted of 59% of 100 mM phosphate buffer and 2 mM sodium 1-

decanesulfonate pH 2.6 and 41% methanol. Samples were injected in a volume of 4 mL, and the analysis 

was run at a flow of 5 mL/min at 25 ºC. Total runtime for each sample was 8.55 min with a 4 min 

extraction step, 4 min elution step and 0.55 min of equilibration. Four eluate fractions were collected in 

2 min intervals using a fraction collector (Foxy Jr FC144; Teledyne) and radioactivity subsequently 

measured using a gamma counter (Wizard 2480, Perkin Elmer). The parent tracer fraction was 

calculated as follow: % parent fraction = (radioactivity of parent eluate/total amount of collected 

radioactivity) x 100%. 

E. Supplementary results 

E.1 Example of simulated data 

The following two figures show examples of simulated TACs. In Supplementary figure 3, four 

different temporal cortex TACs from the same simulation experiment (te = 30 min, ∂max = 50%, 

𝛼 = 5) are shown. Supplementary figure 4 shows five simulated temporal cortex TACs with increasing 

noise for a simulated displacement scan with te = 5 and ∂max = 75%.  
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Supplementary figure 3: examples of four different simulated temporal cortex TACs for a displacement scan where 50% 

occupancy is reached 30 min after the intervention. The noise level (𝛼) was 5. 

 

 
Supplementary figure 4: examples of simulated temporal cortex TACs at five different noise levels ( α = 0, 1, 5, 10 & 15) for 

a displacement scan where 75% occupancy was reached after 5 min. 

 

E.2 Results for simulated drug with te = 120 

In the main text we show parameter estimates for displacement scans where full occupancy 

(∂max) was reached 5 or 30 minutes after the intervention. In addition, we simulated 

displacement TACs where full occupancy was reached after 120 minutes, i.e., 30 minutes after 

the end of the PET scan. The results from this experiment are illustrated in Supplementary 

figure 5, with ∂max estimates on the top row and VND estimates on the bottom row. For all 

occupancies, and both model solutions, the fitting generally failed. The single-step solution 

displays a tendency to underestimate ∂max (by approximately half). The numerical solution 

resulted in very wide distribution of ∂max estimates, frequently landing on the upper limit of 

100%. 
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Supplementary figure 5: histograms of parameter estimates (occupancy (∆), and VND) from a simulation experiment where 

full occupancy is reached after 120 minutes. The dashed lines represent the true parameter values. 

E.3 Effect of noise on parameter estimates 

The following figures show histograms of ∂max estimates from a simulation experiment with 

∂max = 75% and te = 5 min, with increasing noise added to the TACs (α = 0, 1, 5, 10 and 15). 

Supplementary figure 6 shows histograms for all five noise levels, and Supplementary figure 

7 shows histograms for only the three highest noise levels (α = 5, 10, and 15). At α = 0 (no 

noise), both solutions consistently returned the true occupancy value. While the precision of 

the estimates deteriorated with increasing noise, the noise does not seem to induce bias.  

  

 
Supplementary figure 6: Histograms of occupancy estimates for increasing noise (α = 0, 1, 5, 10 & 15). In all histograms, 

occupancy = 75% and te = 5 min. 
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Supplementary figure 7: Histograms of occupancy estimates for increasing noise (α = 5, 10 & 15). In all histograms, 

occupancy = 75% and te = 5 min. 

E.4 Estimation of VND and VT 

The following figures show histograms of VND (Supplementary figure 8) and temporal cortex 

VS (Supplementary figure 9), for ∂max = 25%, 50% and 75% and te = 5 and 30 min, estimated 

with both solutions to the model. 

 
Supplementary figure 8: Histograms of VND estimates from both the numerical solution (green) and single step solution 

(red), for ∂max = 25%, 50% and 75%, and te = 5 and 30 min.  
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Supplementary figure 9: Histograms of temporal cortex VS estimates from both the numerical solution (green) and single 

step solution (red), for ∂max = 25%, 50% and 75%, and te = 5 and 30 min.  

 

E.5 Correlation between parameter estimates 

Supplementary tables 1 and 2 shows the Pearson correlation coefficients and corresponding p-

values for all combinations of fitted parameters, for the numerical and single step solutions, 

respectively. Data from the simulations with ∂max = 75% and te = 5 min was used. For ROI-

specific parameters (VS, K1 and vB) the temporal cortex estimates were used. Results were 

largely comparable between the two solutions. For the numerical solution only, scatter plots of 

all parameter estimates plotted against each other are presented in Supplementary figure 10 

(for global parameters only) and Supplementary figure 11 (for all parameters). Again, in 

Supplementary figure 11, temporal cortex estimates were used for the ROI-specific parameters. 
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 ∂max VND te VS K1 vB 

∂max  R = 0.98 

P < 1e-100 

R = 0.047 

P = 0.13 

R = -0.76 

P < 1e-100 

R = -0.15 

P = 1.03e-6 

R = 0.011 

P = 0.74 

VND R = 0.98 

P < 1e-100 

 R = -0.011 

P = 0.74 

R = -0.80 

P < 1e-100 

R = -0.12 

P = 9.8e-5 

R = 0.013 

P = 0.68 

te R = 0.047 

P = 0.13 

R = -0.011 

P = 0.74 

 R = -0.13 

P = 2.2e-5 

R = 0.062 

P = 0.051 

R = -0.051 

P = 0.10 

VS R = -0.76 

P < 1e-100 

R = -0.80 

P < 1e-100 

R = -0.13 

P = 2.2e-5 

 R = 0.02 

P = 0.47 

R = 0.31 

P < e-10 

K1 R = -0.15 

P = 1.03e-6 

R = -0.12 

P = 9.8e-5 

R = 0.062 

P = 0.051 

R = 0.02 

P = 0.47 

 R = 0.57 

P < 1e-10 

vB R = 0.011 

P = 0.74 

R = 0.013 

P = 0.68 

R = -0.051 

P = 0.10 

R = 0.31 

P < e-10 

R = 0.57 

P < 1e-10 

 

Supplementary table 1: correlation coefficients (R) and p-values (P) for the correlations  for all parameters estimated with 
the numerical solution. Data is taken from the simulation experiment where 75% occupancy was reached after 5 min. For 
ROI-specific parameters (VS, K1 and vB), values for temporal cortex are used. Significant correlations are marked by green 
backgrounds. 

 

 ∂max VND ts VS K1 vB 

∂max  R = 0.98 

P < 1e-100 

R = 0.024 

P = 0.44 

R = -0.75 

P < 1e-100 

R = -0.16 

P = 5.8e-7 

R = 0.012 

P = 0.74 

VND R = 0.98 

P < 1e-100 

 R = -0.029 

P = 0.36 

R = -0.79 

P < 1e-100 

R = -0.13 

P = 6.3e-5 

R = 0.014 

P = 0.67 

ts R = 0.024 

P = 0.44 

R = -0.029 

P = 0.36 

 R = -0.13 

P = 2.7e-5 

R = 0.073 

P = 0.020 

R = -0.050 

P = 0.12 

VS R = -0.75 

P < 1e-100 

R = -0.79 

P < 1e-100 

R = -0.13 

P = 2.7e-5 

 R = 0.020 

P = 0.52 

R = 0.32 

P < 1e-10 

K1 R = -0.16 

P = 5.8e-7 

R = -0.13 

P = 6.3e-5 

R = 0.073 

P = 0.020 

R = 0.020 

P = 0.52 

 R = 0.57 

P < 1e-10 

vB R = 0.012 

P = 0.74 

R = 0.014 

P = 0.67 

R = -0.050 

P = 0.12 

R = 0.32 

P < 1e-10 

R = 0.57 

P < 1e-10 

 

Supplementary figure 10: correlation coefficients (R) and p-values for the correlations (P) for all parameters estimated with 
the single step solution. Data is  taken from the simulation experiment where 75% occupancy was reached after 5 min. For 
ROI-specific parameters (VS, K1 and vB), values for temporal cortex are used. Significant correlations are marked by green 
backgrounds. 
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Supplementary figure 11: Scatter plots of all fitted global parameters plotted against each other. Parameters are estimated 
from the simulated data where ∂max = 75%, and te = 5 min, using the numerical solution. On the diagonal, subplots display 

histograms of parameter estimates for each of the global parameters.   

 
Supplementary figure 12: Scatter plots of all fitted parameters plotted against each other. Parameters are estimated from the 

simulated data where ∂max = 75%, and te = 5 min, using the numerical solution. On the diagonal, subplots display 
histograms of parameter estimates for each of the parameters. For the ROI-specific parameters (VS, K1 and vB) estimates for 

temporal cortex were used. 
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E.6 Residuals of model fits to pig data 

In the main text (Figure 3), we show the fits of both model solutions to temporal cortex TACs 

from two different pig scans with brivaracetam intervention at 60 min. Supplementary figures 

13 and 14 show the model fit (numerical solution) to all included TACs in the same scans. 

These figures also show the residuals. In supplementary figure 15, normalized residuals for all 

six pig scans are shown, for putamen, temporal cortex, occipital cortex and hippocampus. 

 
Supplementary figure 13: displacement model fits (numerical solution) to all included TACs from the pig displacement scan 

with the lowest brivaracetam dose (0.1 mg/kg), including residuals.  
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Supplementary figure 14: displacement model fits (numerical solution) to all included TACs from the pig displacement scan 

with the highest brivaracetam dose (5 mg/kg), including residuals.   

 
Supplementary figure 15: Normalized residuals from the model fits (numerical solution) for all six pig scans, for putamen, 
temporal cortex, occipital cortex and hippocampus. Each pig has a unique marker, which is consistent across the subplots. 

Residuals were normalized to the ROI CT frame-by-frame.  

E.7 Effect of tb on parameter estimates  

In the presented displacement model, tb (the time of the intervention) is treated as a known 

parameter. In real life, the drug cannot enter the circulation instantaneously, but is typically 

injected over seconds-minutes. Also, there will be some delay between administration of 

drug, and drug reaching its brain target. Thus, choosing tb is not trivial.  
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To investigate the effect of a badly defined tb, we fitted the model to the simulated data where 

∂max = 75% and te = 5 min using different values for tb. The data was simulated using tb = 60 

min. We solved the data with both the numerical and single step approaches, and tb defined to 

be 55 min, 59 min, 60 min, 61 min and 65 min. The results are presented in Supplementary 

figure 16. Using a wrong tb had minimal effect on both ∂max and VND estimates, and a big 

effect on te and ts estimates. 

 
Supplementary figure 16: The effect of wrongly defined tb on parameter estimations. Histograms of ∂max, VND, te (numerical 

solution) and ts (single step solution) estimates for different values of tb. The true tb was 60 min. Estimates from the 
numerical solution are shown in green, and estimates from the single step solution are shown in red. 
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D
D E R I VAT I O N O F T H E L E A L O G - L I K E L I H O O D
F U N C T I O N

Likelihood Estimation of Affinity (LEA), a maximum likelihood based
estimator for calculation of IC50, ∆max and VND was introduced in
Paper II. LEA is an extension of Likelihood Estimation of Occupancy
(LEO), which also incorporates the assumptions of the Emax model,
and estimates global drug interaction parameters from the VT values
of a complete baseline-block dataset in a single step.

LEA, like LEO, assumes that the errors in VT are normally dis-
tributed, and that the magnitude of the error is the same in the base-
line and block scans. Therefore, the probability density function of
one subject’s baseline and block VT s in one ROI, will be given by,

f(Vbaseline
T | VND,VS) =

1√
2πσ2

e
−

(Vbaseline
T

−(VND+VS))2

2σ2

f(Vblock
T | VND,VS,∆) =

1√
2πσ2

e
−

(Vblock
T

−(VND+(1−∆)VS))2

2σ2 ,
(26)

where σ2 is the variance of VT .
The likelihood function, L , summarizes the evidence in the mea-

sured data about the parameters we aim to estimate. We can think
of it as a surface, whose peak will indicate the combination of pa-
rameter estimates that maximizes the likelihood of the observed data.
Conceptually, the likelihood function is not the same as the proba-
bility density function. The first is a function of the parameters, and
the latter is a function of the data. However, algebraically, they are
identical, so f(Vbaseline

T | VND,VS) = L (VND,VS | Vbaseline
T ).

The joint likelihood function for the baseline and block data will be
the product of the two likelihood functions. For the simplified case
presented in Equation 26 the likelihood function for VS, VND and ∆,
given the measured baseline and block VT s will be given by:

L (VS,VND,∆ | Vbaseline
T ,Vblock

T )

= f(Vbaseline
T | VND,VS) · f(Vblock

T | VND,VS,∆)

=
1√
2πσ2

e
−

(Vbaseline
T

−(VND+VS))2

2σ2 e
−

(Vblock
T

−(VND+(1−∆)VS))2

2σ2

=
1√
2πσ2

e
−(Vbaseline

T
−VND−VS)2−(Vblock

T
−VND−(1−∆)VS)2

2σ2 .

(27)

This is the LEO likelihood function for one region. In LEA, LEO is ex-
tended by including the Emax model. Thus, the likelihood function

xci



xcii derivation of the lea log-likelihood function

becomes a function of IC50 and ∆max, instead of ∆. For our simpli-
fied case, the likelihood function becomes,

L (VS,VND, IC50,∆max | Vbaseline
T ,Vblock

T ,CP)

=
1√
2πσ2

e

−(Vbaseline
T

−VND−VS)
2
−

(
Vblock
T

−VND−

(
1−

∆maxCP
CP+IC50

)
VS

)2

2σ2

(28)

If we extend the simplified case by including several ROIs, the proba-
bility density functions for one person’s baseline and block VT values
would be given by,

f(Vbaseline
T | VND, VS) =

1√
2π|Σ|

e−
1
2A

TΣ−1A

f(Vblock
T | VND, VS,∆max, IC50) =

1√
2π|Σ|

e−
1
2B

TΣ−1B

where A = Vbaseline
T − (VND1+ VS) ,

and B = Vblock
T −

(
VND1+

(
1−

∆maxCP

CP + IC50

)
VS

)
.

(29)

Σ is the covariance matrix of the VT data. Vbaseline
T , Vblock

T , and VS are
k× 1 arrays for k ROIs. 1 is a k× 1 array of ones.

The joint LEA likelihood function for one subject is the product of
the two probability density functions,

L (VS,VND, IC50,∆max | Vbaseline
T , Vblock

T ,CP)

=
1

2π|Σ|
e−

1
2 [A

TΣ−1A+BTΣ−1B] (30)

where A and B are defined as in Equation 29.
Usually, the natural logarithm of the likelihood function is easier

to differentiate, but the maximum value will occur at the same coor-
dinates. The LEA log-likelihood for one subject is obtained by taking
the natural logarithm of Equation 30, resulting in,

l(VS,VND, IC50,∆max | Vbaseline
T , Vblock

T ,CP)

=ln

(
1

2π|Σ|

)
−

1

2

[
ATΣ−1A+BTΣ−1B

]
.

(31)

Again, A and B are defined in Equation 29. Constant terms in Equa-
tion 31 will not affect the coordinates of the maximum, and can there-
fore be excluded without affecting the optimization. Without constant
terms, the LEA log-likelihood for one subject becomes,

l(VS,VND, IC50,∆max | Vbaseline
T , Vblock

T ,CP)

=
(

Vbaseline
T − (VND1+ VS)

)T
Σ−1

(
Vbaseline

T − (VND1+ VS)
)

+

(
Vblock

T −

(
VND1+

(
1−

∆maxCP

CP + IC50

)
VS

))T

Σ−1

(
Vblock

T −

(
VND1+

(
1−

∆maxCP

CP + IC50

)
VS

))
.

(32)



derivation of the lea log-likelihood function xciii

By combining the log-likelihood functions from all subjects, LEA
can summarize all the evidence in the measured data about the under-
lying parameter values. The joint probability density function is the
product of all the separate functions. In the log-domain this equates
to summarizing all the log-likelihood functions. Thus, for a dataset of
N subjects, the LEA log-likelihood function is given by,

l(IC50,∆max,VND,1,VND,2, ...,VND,N, VS,1, VS,2, ..., VS,N |

Vbaseline
T,1 , Vbaseline

T,2 , ..., Vbaseline
T,2 , ...Vbaseline

T,N , Vblock
T,1 , Vblock

T,2 , ..., Vblock
T,N ,

CP,1,CP,2, ...,CP,N)

=

N∑

j=1

[(
Vbaseline

T,j −
(
VND,j1+ VS,j

))T
Σ−1

(
Vbaseline

T,j −
(
VND,j1+ VS,j

))

+

(
Vblock

T,j −

(
VND,j1+

(
1−

∆maxCP,j

CP,j + IC50

)
VS,j

))T

Σ−1

(
Vblock

T,j −

(
VND,j1+

(
1−

∆maxCP,j

CP,j + IC50

)
VS,j

))]
.

(33)

VND,j is the estimated VND for subject j. Vbaseline
T,j and Vblock

T,j are k× 1

arrays of k baseline and block VT values for subject j. CP,j is the block-
scan plasma drug concentration for subject j.

The dimensionality of the LEA log-likelihood function can be re-
duced by solving ∂

∂VS,j
l = 0. By substituting the resulting expression

for VS,j into the LEA log-likelihood function (Equation 33), it becomes
a function of N+ 2 parameters for a dataset of N subjects. That ex-
pression for VS,j is,

VS,j =
Vbaseline

T,j − VND,j1+
(
1−∆max

CP,j
CP,j+IC50

)(
Vblock

T,j − VND,j1
)

1+
(
1−∆max

CP,j
CP,j+IC50

)2
.

(34)
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