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Abstract

Positron Emission Tomography (PET) is a state-of-the-art imaging technique for
measuring the spatial distribution of neurotransmitters and receptors in the living
human brain. However, the PET signal is influenced by complex spatio-temporal
noise patterns arising from sources of radioactive decay, head motion and scanner-
specific limitations. A large set of preprocessing algorithms have been developed
to remove various sources of noise, but there is currently a limited consensus in
the literature on the most optimal preprocessing strategy. Furthermore, it is not
well understood how the choice of preprocessing strategy may affect the variabil-
ity of the data and ultimately the conclusions of a study. This thesis develops
a framework for the evaluation of preprocessing performance in PET using the
radioligand [11C]DASB, targeting the serotonin transporter, as exemplary case.
In the five included research papers, I evaluate current preprocessing strategies in
the literature, how they affect measures of test-retest bias, variability and false-
positive rates, and how they may lead to different conclusions in a double blind,
randomized, placebo-controlled study. Finally, I provide a statistical framework
for adequately controlling the false-positive rate when dealing with large sets of
preprocessing options.
In this work, I show that (1) variations in choice of preprocessing strategy are
an overlooked aspect in modern PET neuroscience, (2) measures of bias, within-
and between-subject variability are significantly affected by preprocessing strat-
egy, and significant differences between test and retest were obtainable despite
correcting for multiple comparisons and (3) different preprocessing strategies lead
to different neurobiological conclusions. My findings suggest that the preprocess-
ing stage contributes with considerable variance into the data, with the prepro-
cessing steps motion correction, partial volume correction and kinetic modeling
contributing the most. I show that knowledge about the variability of preprocess-
ing is critical to limiting false-positive rates. This underlines the importance of
selecting preprocessing strategy with great caution. Finally, I present my view on
future directions and best practices for handling preprocessing variability across
PET centres.
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Resume in Danish

Positron Emissions Tomografi (PET) er en medicinsk billeddannende teknik til at
måle biokemiske og farmakologiske processer i den levende menneskehjerne. Der
er imidlertid stigende bekymring over, hvor vanskeligt det har været at replikere
denne type forskning, og meget tyder på, at støjkilder fra optagelsen af PET data,
samt valget af hvorledes data forbehandles (præ-processeringen) har afgørende
betydning for det endelige resultat. En lang række præ-processerings strategier
er gennem årene blevet udviklet til at fjerne støjkilder, men der er uenighed
omkring valget af den mest optimale strategi. Derudover fremgår det ikke klart,
hvorledes valget af præ-processering påvirker variabiliteten i data, og dermed
hvilke konklusioner, der kan drages. I denne afhandling udvikler jeg en strategi,
hvormed man baserer sine valg af præprocesserings-trin på kvantitative mål, ved
anvendelse af data optaget med radioliganden [11C]DASB. I de fem inkluderede
artikler viser jeg først, hvor meget valget af præ-processering varierer i literaturen.
Dernæst viser jeg, hvorledes valget af præ-processering påvirker variabiliteten og
falsk-positiv raten i et test-retest datasæt, samt hvordan det påvirker konklu-
sionerne i et randomiseret, placebo-kontrolleret studie. Afslutningsvist, udvikler
jeg et statistisk redskab til at kontrollere for falsk-positiv raten, når der eksis-
terer mange muligheder for valg af præ-processerings strategier. Mine resultater
viser, (1) der er stor variation i literaturen omkring valg af præ-processering (2)
statistiske mål som bias, variabilitet (i samme person og i mellem personer),
samt falsk-positiv raten påvirkes betydeligt af præ-processering, og (3) forskel-
lige valg af præ-processering resulterer i forskellige konklusioner. Mine resultater
demonstrerer, at præ-processering bidrager med betydelig variabilitet i data,
hvor præ-processerings valg: bevægelses-korrektion, partial volume korrektion
og kinetisk modellering, er de komponenter, der bidrager mest. Jeg demonstrerer
også, at viden om variabiliteten af præ-processering er kritisk for a mindske falsk-
positiv raten. Dette understreger vigtigheden af, at valg af præ-processering skal
baseres på grundig analyse og tilpasses det biologiske spørgsmål. Afslutningsvist
bidrager jeg med mit syn på fremtidig forskning, samt bedste fremgangsmåder
til at håndtere præ-processering på tværs af PET centre.
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Chapter 1

Introduction

Positron Emission Tomography (PET) is a state-of-the-art neuroimaging tech-
nique for imaging receptor systems (e.g. dopamine or serotonin) in vivo.
PET provides 4D imaging of the entire brain with relatively good spatial/tem-
poral resolution (millimeters/seconds), and with high sensitivity/specificity for
molecular targets (pico molar concentrations). It is a unique tool in neuroscience
for studying drug effects in the living human brain, but also expands to a broader
range of clinical applications such as the detection of cancerous tissue [Boel-
laard et al., 2015, Fischer et al., 2009], evaluation of myocardial perfusion and
metabolism [Kero et al., 2017, Danad et al., 2014], and for quantifying the pro-
gression of Alzheimer’s Disease (AD) [Zwan et al., 2017, Cohen and Klunk, 2014].

Serotonin is a neurotransmitter critical to homoeostasis, and its regula-
tion and timing are important determinants of health [Azmitia, 1999]. Insuffi-
cient regulation of serotonin has been associated with a range of brain disorders
including depression, anxiety disorders, sleep disturbance, attention deficit dis-
order, schizophrenia and AD, all together constituting the largest socioeconomic
burden in Western societies [Wittchen et al., 2011]. Although our understanding
of the serotonin system has advanced in recent years, several findings have been
contradictory, characterized by an inability to produce, and reproduce, reliable
biomarkers of disease risk and treatment responsiveness. This may, in part, stem
from an incomplete understanding of the sources of variation in the acquired
data. However, while most published receptor studies using PET mainly have
focused on extracting neuroscientifically relevant results, only a limited number
of studies have investigated the extent to which these findings may be influenced
by different sets of preprocessing steps (’preprocessing pipeline/stage’) applied
when analyzing the data. A preprocessing pipeline in neuroimaging commonly
refers to a set of steps used to denoise and remove artifacts in the data for subse-
quent statistical analysis (e.g. motion correction and outlier detection), thereby
improving the overall quality of the data. PET centres or even individual scien-
tists often design their own unique preprocessing strategy, and as a result, there is
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currently no consensus in the PET community on the most optimal preprocessing
strategy. This is further complicated by the fact that preprocessing is not carried
out in isolation, but rather depends on several other stages in a PET workflow
(the "Data-Analysis Chain", Figure 1.1) with various parameter choices, each of
which may interact with preprocessing to influence the signal and noise. These
stages include subject heterogeneity (Step 1), PET data acquisition (Step 2), and
choice of statistical analysis model (Step 4).

Figure 1.1: Workflow in a common PET experiment. The workflow consists
of 4 major stages: 1) subject selection, 2) data acquisition, 3) preprocessing,
4) statistical analysis. Choices at each stage may significantly affect the signal
and noise, but may also interact to influence the results.

Differences in receptor-occupancy as measured by PET are characterized by rel-
atively weak and non-stationary signal changes, typically ranging between 5-20%
following pharmarcological intervention (e.g. [Jørgensen et al., 2018]), and with
complex sources of structured noise. The principal noise components in PET
are typically subject-dependent, including head motion effects and physiological
processes, such as respiration and cardiac pulsation [Reyes et al., 2007, Lamare
et al., 2007]. Studies suggest, that motion artefacts are present in 10-20% of
high-resolution PET data [Ooi et al., 2009]. Furthermore, accompanying noise
confounds are additionally amplified during long acquisition scans [van der Kouwe
et al., 2006, Kober et al., 2012], especially in cases where patients suffer from med-
ical conditions preventing them from staying still in the scanner [Aksoy et al.,
2011, Andrews-Shigaki et al., 2011, Forman et al., 2011]. The signal changes
caused by such confounds are highly variable between subjects, and the integra-
tion of complex temporal and spatial signals making up these data, challenges a
reliable interpretation in studies with low sample sizes [Button et al., 2013]. To
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reduce subject-specific artefacts, a broad range of preprocessing algorithms have
been developed, ranging from de-noising (e.g. spatial smoothing) to artefact-
specific correction (e.g. partial volume correction or motion correction). It is
commonly assumed in PET that there exists a single preprocessing strategy that
can be adapted to all subjects to produce optimal results. However, it has not
been well explored how individual subjects or groups of subjects are heteroge-
neous in their optimal preprocessing strategy. In addition, there is evidence sup-
porting the notion that preprocessing demands (e.g. motion correction) vary as
a function of other stages in a PET experiment, such as data acquisition [Boel-
laard et al., 2001] and statistical analysis [Fisher et al., 2017], although these
issues need further validation.

Taken together, there is a need for a quantitative framework for evaluating and
comparing the performance of preprocessing strategies in PET, and a need to
test potential preprocessing interactions with subject variability and choice of
statistical analysis. In the following section (Chapter 2) I will provide the foun-
dation of this thesis, namely the motivation and background. This includes the
principles behind PET, including the extension to dynamic PET and measure-
ment of radioligand binding. Then, I will review the stages in the Data-Analysis
Chain of a typical dynamic PET experiment, ranging from subject selection to
the final results, and review how they relate to preprocessing. This is preceded by
a discussion on strategies for preprocessing optimization. Finally, I will explicitly
state the research objectives of this thesis in detail.

Thesis overview: The thesis includes a background and motivation part (Chap-
ter 2). The background chapter introduces the reader to the main topics and lim-
itations of a PET experiment, and strategies for optimization and validation of
preprocessing pipelines. Chapter 2 is rounded off with the research objectives of
this thesis. Chapter 3 contains the methods of the PET Data-Analysis Chain used
in this thesis, including details to evaluate and optimize preprocessing pipelines.
Chapters 4-7 cover the main results of this thesis (studies 1-4), presenting the
five scientific articles from the Appendices A-E. A thesis conclusion is found in
Chapter 8, including a perspective on future work.
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Chapter 2

Motivation and Background

2.1 Positron Emission Tomography

2.1.1 Principles of PET

Positron Emission Tomography (PET) is a quantitative nuclear imaging tech-
nique, in which the emission of positrons from the nucleus of a radioactive atom
is used to construct molecular images. When positrons interact with electrons,
they are annihilated, causing two 511 KeV photons to emit linearly in almost op-
posite direction (Figure 2.1). The line in which the photons are emitted is known
as a Line Of Response (LOR). The process of forming a LOR is fundamental in
nuclear medicine, where a radioactive isotope is either injected or inhaled into the
body. The isotope will distribute throughout the body by blood circulation, and
accumulate in specific tissue cells depending on the biochemical structure of the
radiotracer. Here the radioactive isotope will emit positrons as it decays. The
two emitted photons can be detected in coincidence using gamma ray detectors
and the signal can subsequently be converted into an electrical signal, amplified,
and reconstructed into a 3D image containing the spatial location of the decay.
The theory behind PET, including some of its limitations, can be summarized as
the following:

After the positron leaves the nucleus it will have an initial kinetic energy. How-
ever, due to elastic and inelastic interactions with surrounding matter, it will
eventually lose its kinetic energy making the distance travelled from the nucleus
finite. The finite distance travelled contributes to uncertainties from where the
radioactive decaying nucleus originated. This is rather essential as the main pur-
pose in PET is to estimate the location of the decaying nucleus and not the
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location of the annihilation. In addition, not all photon pairs are emitted strictly
at an angle of 180°. In water only 35% of the annihilations have zero momentum
and emit photons exactly at an angle of 180°. This combined with the positron
traveling distance before annihilation are some of the limitations affecting the
resolution of a PET scanner. For an isotope such as 11C the positron mean travel
range in water is approximately 1 mm [Bailey et al., 2005, p. 22].

Figure 2.1: Annihilation as a result of a positron being ejected from the nu-
cleus of a 18

9F atom. The annihilation occurs due to positron-electron merging,
thereby creating two photons to be sent off in almost linear opposite direction.

Attenuation of Radiation and Interaction with Matter
High-energy photons can interact with matter in three different ways; the pho-
toelectric effect, Compton scattering and pair production [Bailey et al., 2005].
The extent to which the photons interact with surrounding matter is predomi-
nantly determined by the energy of the photon, and the corresponding matters
ability to absorb energy. In the photoelectric effect the photon will collide with a
bound electron of an atom and transfer all of its energy to the electron. This will
subsequently result in the emission of an electron from the atom. In Compton
scattering the photon interacts with a loosely bound orbital electron of an atom
and will transfer only a part of its kinetic energy. The loosely bound electron
will subsequently be ejected from the atom, and the photon will be scattered in
a new direction with an angle related to its loss of energy. Compton scattering
occurs frequently within the human body at an energy interval of approximately
100 keV to 2 MeV. Pair production is the third option for photons to interact
with matter. Here a high-energy photon with kinetic energy higher than 1.022
MeV collides with a surrounding nucleus.
Several crystals can be used in PET imaging (e.g. NaI(T), BGO, LSO, LYSO,
GSO) to detect the photons and they are all characterized by having different
physical properties. Mainly four properties for crystals are essential for its proper
application in PET; stopping power for 511 keV photons, signal decay time, light
output, and intrinsic energy resolution [Bailey et al., 2005].
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Coincidence Detection
Subsequently to annihilation (coincidence event) the two emitted photons are
detected by two scintillators, but in order to measure the spatial point of annihi-
lation a timing window needs to be introduced in this context. A timing window
can be defined as being a short time interval, �t, for the detection of photons from
a coincident event within the field-of-view (FOV). Mainly, coincidence events are
divided into three categories: random, true and scatter. Random coincidences
occur when two photons from independent events are detected at two opposing
detectors and within the coincidence timing window (10�8sec). Random coinci-
dences are therefore not representing a single coincident event, and they mainly
appear as a result of a too large timing window. Random coincidences and scat-
ter are mainly the two most detrimental effects in PET imaging that need to be
corrected for in order to get true coincidences only (Figure 2.2). To further re-
duce the contribution of randoms and scatter, it is also common in PET to select
an energy window, constraining the photons to lie within the range of typically
400 KeV to 600 KeV.

Figure 2.2: Counts per second (cps) and the association with the total
activity (Bq). Red is the true counts, yellow is the random counts, and green
is the Noise Effective Counts (NEC) ([Holm et al., 1995]).

Spatial Resolution
The contribution from all the above limitations (traveling distance before annihi-
lation, interaction with matter, and detector principles) make the resulting PET
image susceptible to Partial Volume Effects (PVE). The PVE causes the radio-
tracer signal from a point object to have a "spread out", appearing larger than
it actually is. This blur effect is caused by the spatial resolution of the scanner
(Point Spread Function, PSF), a quantitative measure of how well a PET scan-
ner can differentiate between two objects in close vicinity. The reconstructed
PET image can be approximated by assuming that the true underlying image
has been volume-smoothed with a Gaussian kernel at a known resolution (PSF).
This measure is called the full width at half maximum (FWHM) and is equal to
the spatial resolution of the scanner. As a consequence of this, a small FWHM
equals a small spatial resolution. In this sense, smaller is therefore better.
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2.1.2 Measuring Radioligand Binding with Dynamic PET

Dynamic PET studies that can measure radioligand uptake over time in vivo are
increasingly receiving attention in the field of neuroimaging due to their high
specificity at the receptor-level. Dynamic PET studies measure the distribution
of a radioligand over sequential time intervals, whereas studies using static PET
measure the distribution over a single time interval, hence providing no temporal
information. The dynamic measurements can be reconstructed into a sequence of
3D images (frames) that contain the concentration of radioactivity (Bq/mL) as
a function of time (time-activity curve, TAC) from each voxel (volume element)
or region (contiguous set of voxels).

Figure 2.3: (A) Overview of the modeling assumptions regarding tracer
delivery, uptake, binding, and clearance of a radioligand in a single voxel
(B) Time Activity Curve (TAC) for the voxel in (A) depicting the total
distribution of radioligand over time.

The time-varying distribution of radioligand can be used to mathematically model
the physiological parameters of interest such as perfusion and receptor densities.
The model seeks to explain the kinetic behaviour of the radioligand by introducing
a number of possible compartments. For example, a radioligand targeting the
serotonin transporter (5-HTT) may be specifically bound in the synapse or it
may distribute freely without binding to 5-HTT (Figure 2.3A). The modeling
will be covered in detail in the preprocessing section 2.2.3.
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2.2 The Data-Analysis Chain in Dynamic PET

PET experiments typically consist of complex workflows, with multiple stages
ranging from (1) subject selection, (2) experimental design, (3) data acquisition,
(4) preprocessing, (5) statistical analysis to the neurobiological interpretation
(Figure 2.4). However, choices made at any stage in a PET workflow may sig-
nificantly affect the signal and noise in the data. Furthermore, the stages are
not independent from each other and may interact to influence the results. The
optimization of a PET workflow is often performed with the aim of optimizing
only a single stage and/or step, leaving other variables fixed. However, in order
to optimize a PET workflow, it is important to have deep knowledge of each
step and empirically examine how the steps may interact to influence the results.
The details of each stage are outlined below with a special focus on the use of
the radioligand [11C]DASB, targeting the 5-HTT. Furthermore, at each stage,
an extra emphasis is put on the interaction with preprocessing and how it may
influence the results of the analyses. The focus of this thesis is the interaction
between subject selection (stage 1), preprocessing strategy (stage 4) and statis-
tical analysis (stage 5), although the interactions between preprocessing and the
other stages are also reviewed.

Figure 2.4: Flowchart depicting a common pipeline for neuroimaging studies
(multimodal PET and MRI) and its multiple stages ranging from (1) experi-
mental design / subject selection, (2) data acquisition, (3) preprocessing, (4)
data modeling/analysis, and (5) interpretation.
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2.2.1 Subject Selection

Extensive research in humans supports the notion that 5-HTT densities, as can
be measured with [11C]DASB-PET, are subject-dependent and may vary as a
function of age, sex, genotype (5-HTTLPR or BDNF val66met) and stress-levels
[Fisher et al., 2017, Cannon et al., 2006, Kalbitzer et al., 2010]. While these
latter components may all contribute to variation directly at the receptor level,
other types of variation may appear in terms of subject-specific head motion,
respiration, cardiac pulsations and diurnal variation. A number of studies have
shown that head motion significantly affects the signal-to-noise (SNR) ratio and
renders the PET data disturbed or even useless [Anton-Rodriguez et al., 2010,
Green et al., 1994]. Variations in respiration and cardiac pulsations will also
affect the blood flow, and thereby the delivery of radioligand to the brain tissue.
Furthermore, changes in blood flow may influence the neuronal response and
vascular coupling, but this effect has been shown for a few receptor-systems to
have limited impact (e.g. [Sander et al., 2019]). Diurnal variation has been
reported to result in lower 5-HTT levels across the day [Matheson et al., 2015],
although only males were included in this latter cross-sectional study. Other
factors that have been reported to affect the serotonin system include seasonal
changes [Mc Mahon et al., 2016, Nørgaard et al., 2017], variations in menstrual
cycle [Jovanovic et al., 2009] and personality traits such as neuroticism [Tuominen
et al., 2017] and anxiety [Cannon et al., 2006].

The preprocessing strategy that optimizes signal detection may vary substan-
tially between subjects even for subjects characterized as homogeneous [Zan-
derigo et al., 2017]. As it is expected that patterns of subject-specific noise will
vary across subjects, it is also expected that the degree to which the noise can
be removed using a fixed preprocessing strategy will vary across subjects. For
example, partial volume correction (PVC) is recommended in studies where brain
atrophy interacts with an effect of interest (e.g. age or diagnosis), and failure to
properly account for partial volume effects in these cases can falsely inflate or
degrade the effect of interest [Greve et al., 2016]. Limited understanding exists
how subject-specific sources of variation and their potential interactions may in-
fluence the subsequent acquisition of the PET signal as well as other parts of the
data-analysis chain.

2.2.2 Data Acquisition

Data acquisition in dynamic PET studies typically involve a combination of im-
plicit and explicit parameter choices that can be tuned and optimized to control
the signal and noise. The explicit parameters include total scanning time, in-
jected dose, specific activity, attenuation correction and the use of head masks
to reduce subject-specific motion [McMahon et al., 2018, Ogden et al., 2007].
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The implicit parameters (pertaining to the scanner hardware/software) include
time window length, energy window, spatial resolution, sensitivity, framing and
the reconstruction [Morimoto et al., 2006, Belanger et al., 2004, Boellaard et al.,
2001]. The implicit and explicit parameters may interact with each other to affect
both signal and noise, and there are important trade-offs to be made that have
been demonstrated to affect subsequent steps in the data-analysis chain [Anton-
Rodriguez et al., 2010, Green et al., 1994, Jin et al., 2014]. However, as this thesis
mainly focuses on preprocessing interactions with statistical analyses, a compre-
hensive examination of data acquisition is considered beyond the scope and needs
to be examined in future work. Nevertheless, as several important components
of the data acquisition may influence the preprocessing and statistical analyses,
I here provide a brief overview of some of the interactions and limitations.

The SNR in PET increases with injected dose, but there is global optimum to
optimize for (Figure 2.2) where the fraction of random counts will catch up with
the fraction of true counts to reduce the Noise Effective Counts (NEC) [Holm
et al., 1995]. High-resolution scanners have higher sensitivity compared to clini-
cal scanners but they are limited by smaller detector elements, resulting in more
noise due to scatter and head motion [Wienhard et al., 2002, van Velden et al.,
2009]. The size and dimensions of the detector elements have important trade-
offs with increasing size of the detector resulting in increased spatial resolution
[van Velden et al., 2009]. In addition, some scanners favour axial resolution over
transaxial resolution (e.g. GE Advance PET scanner, [Khohlmyer and Stearns,
2002]). This latter parameter choice produces non-isotropic spatial resolution, re-
sulting in different spill-over effects (partial volume effects, PVEs) of radiotracer
in different directions. A number of components in the PET acquisition may con-
tribute to PVEs including detector properties, traveling distance to annihilation,
head motion and the reconstruction algorithm. These choices will interact with
subsequent preprocessing steps such as PVC and spatial smoothing [Greve et al.,
2014].

2.2.3 Preprocessing

Preprocessing in dynamic PET commonly refers to a set of algorithms used to
denoise and remove artifacts in the data for subsequent statistical analysis (e.g.
motion correction and PVC), thereby improving the overall quality of the data.
In dynamic PET, this typically includes 5 main categories: (1) motion correction
(2) co-registration (3) delineation of volumes-of-interest (4) PVC and (5) kinetic
modeling for quantification of radioligand binding. Although it has been sug-
gested that there exists nearly as many unique analysis pipelines in the literature
as there are studies [Carp, 2012b], this thesis specifically focuses on the subset
of preprocessing strategies that are most common for dynamic PET, with the
exception of the analysis of arterial blood data. All the included preprocessing
steps have various tuning parameters that can be optimized to control signal and
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noise. The details of these parameter choices are discussed below.

Motion Correction

Motion correction (MC) is typically performed as the first preprocessing step in
dynamic brain PET studies, with the goal of removing head motion artefacts
induced during the data acquisition (Figure 2.5). The most common applica-
tion of MC is frame-by-frame correction, where alignment parameters for each
frame are (1) estimated to a reference frame by minimizing a cost function, (2)
transformed using the estimated alignment parameters and (3) resliced into a
4D motion corrected data set. It has been shown by numerous paper that head
motion in PET brain imaging renders PET data disturbed or even useless [Ole-
sen et al., 2013, Anton-Rodriguez et al., 2010, Green et al., 1994]. [Freire and
Mangin, 2001], and [Orchard and Atkins, 2003], demonstrated that least-squares
cost functions may be susceptible to activation biases and outliers, which for PET
means that the MC algorithm may attempt to incorrectly account for motion if
the image has low SNR, or if the tracer distribution in the target volume sub-
stantially changes over time compared to the reference volume. Conversely, in
the absence of motion, MC will lead to some degree of smoothing due to an in-
terpolation in the reslicing. Frame-by-frame motion correction without re-doing
the image reconstruction may also result in errors in attenuation correction in
the PET reconstruction, which is often neglected [van den Heuvel et al., 2003].

Figure 2.5: Example showing the Time Activity Curves of [11C]DASB-PET
uptake in the thalamus either with motion correction (red) or without (blue).

Co-registration

Co-registration is typically performed in PET studies as a rigid-body volume
transformation of a reference image to a target image. The target image is often a
structural Magnetic Resonance Image (MRI) containing anatomical information
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or a group-atlas with predefined volumes-of-interest. A precise co-registration
is important, as voxels that move across tissue boundaries are susceptible to
extreme signal changes [Schwarz et al., 2017]. The cost-functions used for co-
registration are similar to as for MC. However, as the reference image (PET)
and target image (MRI) have different spatial resolution and spatial scales (voxel
size), resampling with spatial interpolation is always carried out. The spatial
interpolation is commonly used to boost SNR, at the expense of image resolution
[Strother et al., 2004].

Delineation of Volumes-of-Interest

Many PET studies are driven by hypotheses related to specific anatomical brain
structures, often referred to as volumes-of-interest (VOIs). For PET this gener-
ally requires co-registration to a structural MRI with anatomically labeled regions
(atlas), as the signal in PET does not reflect anatomical information. However,
publicly available atlases have different VOIs of the same biological region vary-
ing in both size, location and delineation technique (Figure 2.6). Some studies
provide evidence that there is good agreement between certain atlases [Schain
et al., 2014], whereas other studies suggest substantial variations between atlases
[Nørgaard et al., 2015].

Figure 2.6: Structural MRI (left), overlayed with delineated regions from
the Automated Anatomical Labeling (AAL) atlas (center), and overlayed with
delineated regions from the FreeSurfer atlas (right).

Manual labeling, as opposed to automatic, may impose an interrater bias in the
data, unless well-defined operational criteria and blindness to diagnosis are en-
forced. Another potential issue with both manual delineations and atlases is
the assumption of homogeneously distributed tracer within the region. If this
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assumption is violated it will misrepresent the true underlying radioligand con-
centration within that region.

Partial Volume Correction

Partial Volume Correction (PVC) is typically performed by (1) estimating the
spill-in and spill-out of signal between tissue types with different neuronal prop-
erties (i.e. gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF))
and then (2) removing the contribution of spill-in while simultaneously compen-
sating for spill-out signal. The degree of spill-over effects is largely determined
by the PSF of the scanner, and an increased spatial resolution will result in an
increased degree of partial volume effects. Furthermore, as the PSF not only
varies between PET scanners but also on the distance from the centre of the field
of view [Olesen et al., 2009], it is important to make proper assumptions about
the PSF when performing PVC so it matches the location and resolution of the
VOI. As different tissue types have different partial volume effects, a homoge-
neous and accurate segmentation of each tissue type is required [Greve et al.,
2016]. However, the utility of PVC is disputed. It has been shown to cause noise
amplification [Rousset et al., 2007] and reduce measurement bias [Schwarz et al.,
2018]. However, it has also been found to potentially induce a systematic bias,
reflecting subject-dependent differences in anatomy and not true differences in
radioligand uptake [Greve et al., 2016]. PVC is typically recommended in studies
where brain anatomy interacts with an effect of interest (e.g. age or diagnosis),
and failure to properly account for PVEs in these instances can falsely impact
the results [Müller-Gärtner et al., 1992, Meltzer et al., 1999, Greve et al., 2016].
[Greve et al., 2016] suggested the Geometric Transfer Matrix (GTM) to be the
preferred method for VOI analysis compared to no PVC, but this method largely
depends on a homogeneous distribution of tracer inside the VOI. The method
therefore remains to be fully validated as the preferred method. Nevertheless,
many PVC methods have been criticized for being subject to arbitrary selection
of parameter choices, consequently resulting in limited consensus in the literature
on the importance and/or use of PVC [Greve et al., 2016].

Kinetic Modeling

For kinetic modeling using reference tissue models (RTM), the final output is
the non-displaceable binding potential (BPND) for each given region [Innis et al.,
2007]. RTMs rely on the assumption and identification of a reference region
with non-specific binding characteristics. In the [11C]DASB-PET literature the
cerebellum has commonly been used as a reference region because of its absence
of 5-HTT. However, the use of cerebellum as a reference region is questionable.
Some researchers argue for the use of cerebellum [Ginovart et al., 2001], whereas
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others argue against [Miller et al., 2016], as [11C]DASB BPND has been shown
to be displaced following treatment with selective serotonin reuptake inhibitors
(SSRIs) [Parsey et al., 2006b]. RTMs mainly dissociate from each other in the
model-parameter estimation varying from linear (MRMT2; [Ichise et al., 2003])
to non-linear techniques (SRTM; [Lammertsma and Hume, 1996]). The methods
also vary in terms of assumptions and how the noise is controlled (e.g. MRTM
vs. MRTM2, [Ichise et al., 2003]), and how many parameters are necessary to fit
the data (two parameters (MRTM2) vs. three parameters (SRTM and MRTM)).
However, there is a bias-variance trade-off to consider, as a reduction in number of
parameters to fit the data will reduce the variance of the model, at the expense of
a bias [Ichise et al., 2003]. It is however, largely unknown how this bias-variance
trade-off impacts the quantification in individual subjects and regions, and hence
may influence the results in a group analysis.

2.2.4 Statistical Analysis

Once preprocessed, the goal of a dynamic PET study is often to establish group
differences in region-specific BPND between a group with a medical condition
(e.g. depression) and a healthy control group. While this study design is cross-
sectional, it may also be expanded to a longitudinal design, where participants
are scanned more than once (e.g., [Mc Mahon et al., 2016]). The study may also
include an intervention [Frokjaer et al., 2015], scores of depression or any other
external variables that may be used as confounds or correlates with the BPND.
The end result is a statistical measure reflecting the association between the
BPND (dependent variable) and the external variables (independent variables).
The statistical analysis is often carried out using two general approaches, namely
univariate or multivariate analysis techniques.

Univariate analysis models are limited to a single dependent variable, and indi-
vidual brain regions of specific binding are therefore assumed to be independent,
consisting of randomly-sampled mixtures of signal and noise. Univariate analysis
models are often linear in nature, e.g. ANOVA (Analysis of Variance), ANCOVA
(Analysis of Covariance), linear or rank correlation analyses (Pearson, Kendall or
Spearmann) and t-tests. Together these linear models constitute special cases of
the General Linear Model (GLM, [Friston et al., 1995]) generalizing multiple lin-
ear regression to the case of p dependent variables [Chen et al., 2014, Monti, 2011].
The assumptions in univariate analysis models are often an over-simplification of
dynamic PET data, as region-specific binding is not independent between regions,
and may be both functionally and structurally connected [Beliveau et al., 2015].
However, univariate analysis models are simple and provide a straight-forward
interpretation of a single variable.

Multivariate analysis models account for the correlation/covariance structure be-
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tween brain regions, identifying spatially distributed patterns of specific binding
that fluctuate coherently with group, session and/or other external variables (Fig-
ure 2.7). The application of multivariate analysis models can range from simple
linear models (approaching univariate techniques) to complex non-linear models
[Hansen et al., 1999, Morch et al., 1997]. Common for all multivariate analysis
models is that each set of N brain regions is treated as an N-dimensional vector,
and each scan is treated as a set of N-dimensional data points. The multivariate
analysis model then searches for a lower-dimensional vector (discriminant) that
best discriminates spatial patterns of brain regions that are different between
conditions (e.g. test vs. retest). Multivariate analysis models are sensitive to
cases where brain regions have strong spatial correlations, a condition that is
satisfied in PET data. Taking this set of co-varying brain regions, there exists a
linear combination that can capture a more sensitive signal (Figure 2.7)

Figure 2.7: Multivariate normal distributions of BPND in the thalamus (first
axis) and in the neocortex (second axis) across baseline (red distribution) and
rescan (blue distribution). If measured univariately (i.e. either on the first or
second axis) the distributions are not separable, but there exists a projection
onto the vector ~w that separates the two distributions.

Both univariate and multivariate analysis models have strengths and weaknesses.
Although univariate analysis models have been widely employed in the PET
community, the existence of complex dependencies between brain regions may
not be fully explained by univariate models, biasing the model at the expense
of decreased variance [Nørgaard et al., 2017]. Biased univariate analysis models
therefore tend to be more robust, reproducible and less sensitive to preprocessing
strategies compared to less-biased multivariate models that have higher variance.
In comparison, multivariate analysis models are more sensitive to weaker and
spatially distributed patterns of signal, and may have better detection of signal
if preprocessed optimally. In this sense there is a bias-variance trade-off to con-
sider. However, while univariate models need to correct for multiplicities due
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to multiple hypothesis testing, multivariate analysis models allow for alternative
significance tests that do no require correction for multiple comparisons. The
different approaches for significance testing have different assumptions, and it
is therefore likely that they have different control over the probability that the
positive conclusions could arise under the null hypothesis (false discovery rate,
FDR). Objectively, it is difficult to argue, that multivariate analysis models per-
form better than univariate analysis models, as these methods, in fact, provide
different inferences about the data. In the functional MRI (fMRI) literature, it
has been shown that the distinction between univariate and multivariate analysis
models is dependent on the preprocessing, with better preprocessing strategies
minimizing the distinction [Tegeler et al., 1999, Churchill et al., 2015]. Neverthe-
less, there is a need in the PET community to examine the interaction
between statistical analysis and preprocessing optimization, and its
influence on the false-positive rate. Throughout the thesis, I apply the mul-
tivariate Linear Discriminant Analysis (LDA) model for prediction of two-class
classification problems. The LDA model is sensitive to preprocessing choices,
and is conceptually an advantageous approach in cases where there exists an a
priori hypothesis that differences in BPND are not regional, but rather occur on
a network level with spatially distributed patterns of BPND.

2.3 Optimization of Preprocessing Strategies

In the absence of a “ground truth”, it remains a major challenge in PET to op-
timize preprocessing strategies, and it may take alternative performance metrics
to quantitatively evaluate and compare various preprocessing strategies [Strother
et al., 2002, Churchill et al., 2015]. The uptake of radioligand in the brain varies
across both regions and subjects, but also between scan sessions [Frankle et al.,
2004]. Therefore, there exists no unifying pattern of radioligand uptake that can
be predicted and generalized to the population. Simulations can overcome these
latter limitations of real data by providing the "ground truth", having knowledge
about the true underlying data generating process [Ichise et al., 2003]. However,
while simulations can be instructive, it is obviously very difficult to simulate the
complex spatio-temporal noise patterns arising from a PET scanner. Simulations
therefore provide only limited information on preprocessing effects. Two broad
categories of performance metrics will be used in this thesis to quantitatively
measure pipeline effects in real data: (1) Reproducibility and (2) Prediction.
The reproducibility metrics are computed using statistical subsampling, and the
prediction metric is computed using nested cross-validation. The rationale for
these metrics are listed below.
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2.3.1 Performance Metrics

Reproducibility: To capture the variation of BPND in different brain regions,
between subjects and between sessions, new PET radioligands are typically ex-
amined in a test-retest setting, implicitly assuming that test and retest should
generate similar outcomes [Ogden et al., 2007, Kim et al., 2006]. It seems to be
the understanding that the test-retest examination is the ultimate validation for
successful application of the radioligand in the community. For example, if the
between-subject variation is too high it may require an unreasonable number of
subjects to establish group differences. Furthermore, if the within-subject vari-
ation is too high it becomes infeasible to perform longitudinal studies applying
a pharmacological intervention, e.g. if the expected within-subject variability is
larger than the effect of the intervention. For these reasons, performance metrics
of reproducibility such as test-retest bias, within- and between-subject variance,
and the Intraclass-Correlation Coefficient (ICC) are often applied in PET test-
retest studies [Frankle et al., 2004, Ogden et al., 2007, Kim et al., 2006]. The
details of these metrics are provided in Chapter 3.

Prediction: Models providing a prediction metric (e.g. predictive accuracy) are
conceptually intriguing compared to univariate hypothesis testing, as they pro-
vide a quantitative measure of the ability to correctly predict the experimental
condition (class) in an independent sample [Varoquaux et al., 2017]. Specifically,
a predictive model is built on a training data set to estimate the discriminant
brain pattern that dissociates between classes. Subsequently, the model is eval-
uated on its ability to predict the classes in an independent data set.

Although the goal of any neuroscientific study is to maximize model prediction
and reproducibility, these metrics represent unique trade-offs in model parameter-
ization, usually limiting the ability to maximize both simultaneously [Baldassarre
et al., 2017]. For example, models driven by maximization of reproducibility will
have stable and reproducible brain patterns, but will have less sensitivity towards
detecting minor changes in binding following a pharmacological intervention. An
illustration of this can be made by considering the application of a infinitely high
smoothing kernel to the PET data. The output will be a perfectly reproducible
brain pattern, but the analysis model will have no ability to predict the exper-
imental condition due to the lack of variation. In contrast, models maximizing
prediction will be highly sensitive towards predicting minor changes in binding,
but will tend to produce non-reproducible and unstable brain patterns. In this
thesis, the performance of a given preprocessing strategy is first evaluated using
metrics of reproducibility. Then, preprocessing strategies are evaluated for their
predictive performance in an independent test set. Finally, a joint evaluation is
carried out to identify a compromise between model parameterizations of pre-
diction and reproducibility, which ultimately can be used to select an optimal
preprocessing strategy.
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2.4 Thesis Objectives

The overall goal of this thesis is to improve signal detection in dynamic PET imag-
ing studies by evaluating and optimizing choices in the preprocessing pipeline,
using statistical performance metrics of reproducibility and prediction.

Goal 1: To identify the variability of acquisition and preprocessing choices in
the [11C]DASB-PET literature, and to quantify the impact of the choices using a
meta-analytic approach. I will review data from 21 PET centres that published
a total of 105 [11C]DASB-PET papers between November 2000 and March 2017
(manuscript A).

Goal 2: To evaluate the impact of commonly used PET preprocessing strategies
(addressed in Goal 1) on a test-retest data set.

Goal 2a: I will examine 384 different strategies in 30 subjects that were
scanned twice with the 5-HTT radioligand [11C]DASB. Five commonly
used preprocessing steps, each with 2-4 plausible options, will be investi-
gated: (1) motion correction (MC), (2) co-registration, (3) delineation of
volumes of interest (VOI’s), (4) partial volume correction (PVC), and (5)
kinetic modeling (manuscript B).

Goal 2b: Examine the impact of preprocessing strategies on the false-
positive rate in univariate and multivariate analysis models with and with-
out correction for multiple comparisons (manuscript C).

Goal 3: Examine the impact of pipeline choices, as indexed in Goal 1 and Goal
2, in an independent test-set of 30 subjects with a pharmacological intervention
between scan 1 and scan 2 (manuscript D).

Goal 4: Develop a statistical framework for estimation of statistical significance
in the context of multiple preprocessing strategies and predictive classification
(manuscript E).

For eachGoal, I focus on the characterization of preprocessing optimization, and
discuss how each performance metric provides valuable information. In Chapter
3, I provide the methodological aspects of the PET workflow that has been used
in this thesis, ranging from subject selection, data acquisition, preprocessing and
statistical analysis (Figure 2.4). In Chapter 4, I addressGoal 1 by evaluating the
variety of methodological choices in the [11C]DASB-PET literature. In Chapter
5, I examine a subset of the choices identified in Goal 1 to address Goal 2: the
effects of commonly used PET preprocessing strategies on performance metrics of
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reproducibility (Goal 2a) and false-positive rate (Goal 2b) in a test-retest data
set. Chapter 6 expands on the results from Goal 1 and Goal 2, by determining
the extent to which different preprocessing strategies lead to different conclu-
sions (Goal 3) in a randomized, double-blind, placebo-controlled study using a
pharmacological intervention. Chapter 7 establishes a non-parametric framework
for extending the non-parametric testing of statistical significance in predictive
modeling by including a plausible set of preprocessing strategies to measure the
predictive power (Goal 4). Finally, Chapter 8 summarizes the outcomes from
Goal 1-4 and discusses future research objectives.



Chapter 3
Methods - The

Data-Analysis Chain

In this chapter, I will review the details of the Data-Analysis Chain that is used
throughout Chapters 5-7 in this thesis.

3.1 Subjects

A total of 60 female participants (mean age 24.3 ± 4.9 years) were included in a
double blind, randomized, placebo-controlled study [Frokjaer et al., 2015] inves-
tigating depressive responses to sex-steroid hormone manipulation. Participants
received either a subcutaneouos injection of a gonadotropin releasing hormone
agonist (GnRHa) implant (ZOLADEX with 3.6 mg of goserelin; Astra Zeneca,
London, UK) (N=30) or saline (N=30). All participants were PET scanned twice
on separate days (median interval of 34 days). One subject in the GnRHa group
was excluded due to an issue with the PET acquisition, leaving 29 subjects avail-
able for analysis. Further details can be found in [Frokjaer et al., 2015]. The
study was registered and approved by the local ethics committee (protocol-ID:
H-2-2010-108). All participants gave written informed consent. The 30 subjects
receiving placebo were used in manuscripts [B] and [C], whereas the remaining
29 subjects receiving an intervention were used in manuscripts [D] and [E]. The
placebo group was considered to represent test-retest conditions with no expected
changes between scan 1 and scan 2. I therefore used this data set to optimize the
preprocessing strategy using a set of performance metrics related to reproducibil-
ity. The remaining part of the data including the active intervention was used
to optimize the preprocessing strategy using predictive accuracy as performance
metric. The details of the evaluation and optimization are provided below.
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3.2 Data Acquisition

In this thesis, a fixed dynamic PET sequence with parameter settings commonly
used in the literature, was employed using the Siemens ECAT High-Resolution
Research Tomography PET scanner. The data was acquired in 3D list-mode and
with the highly selective radioligand [11C]DASB. The imaging protocol consisted
of a single-bed, 90 minutes emission acquisition post injection of 587 ± 30 (mean
± SD) MBq, range 375-612 MBq, bolus into an elbow vein. PET data was recon-
structed into 36 frames (6x10, 3x20, 6x30, 5x60, 5x120, 8x300, 3x600 seconds)
using a 3D-OSEM-PSF algorithm ([Olesen et al., 2009]) with TXTV based at-
tenuation correction (image matrix, 256 x 256 x 207; voxel size, 1.22 x 1.22 x
1.22 mm) ([Sureau et al., 2008, Keller et al., 2013]).

3.3 Preprocessing

Here, I establish a 5-step data preprocessing pipeline, each step with 2 to 4 op-
tions, to estimate the outcome measure BPND (Figure 3.1). All the individual
procedures have previously been used in published [11C]DASB-PET studies, ex-
cept for PVC using the GTM. The steps are listed below in the order in which
they were applied. Specific rationales for including/excluding each unique pre-
processing step and their options are listed below.

Step 1 – Motion Correction (with/without)
Within-scan PET motion correction was executed using a data-driven automated
image registration (AIR v. 5.2.5, http://loni.usc.edu/Software/AIR). Prior to
alignment, each frame was smoothed using a 10 mm Gaussian 3D kernel and
thresholded at the 20-percentile level to boost SNR. Alignment parameters were
estimated for the smoothed PET frames 10-36 to a reference frame with high
SNR (frame 26) using a scaled least squares cost-function in AIR. Subsequently,
the non-smoothed frames were transformed using the estimated alignment pa-
rameters and resliced into a 4D motion corrected data set (e.g., as applied in
[Frokjaer et al., 2015] and [Beliveau et al., 2017]). The motion correction estima-
tion for frame 10 was applied to the first 9 frames. I chose to register frames 10-36
only, because the first 9 time frames (10/20 sec) have low count statistics, high
noise levels and have shown to produce highly variable alignment parameters.
Criterion for acceptable motion was a median movement less than 3 mm across
frames, as estimated by the median of the sum of the squared translations (x,y,z)
across all voxels. The rationale for testing the effect of MC in the pipeline is
because motion artefacts vary by dataset. Furthermore, MC should ultimately
control motion artefacts, but may also impose unwanted biases on the data or
reduce experimental power, especially in cases of minor or no head movement
[Churchill et al., 2012]. In addition, manuscript [A] showed that MC lowers be-
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tween subject variability in striatum, resulting in 26% fewer subjects needed in
a group analysis to achieve similarly power statistical tests. It is therefore of
interest to validate this latter observation in an independent data set.

Step 2 – Co-registration (4 options)
All single-subject PET frames were initially either summed (according to their
frame length i.e. integral) or averaged over all time frames to estimate a time-
weighted (twa) or averaged (avg) 3D image for co-registration. Two different
co-registration techniques were subsequently applied to either the twa or the avg
image, namely Normalized Mutual Information (NMI, [Studholme et al., 1999]) or
Boundary-Based Registration (BBR, [Greve and Fischl, 2009]) each with different
cost functions. This step is explicitly evaluated, as its effects may vary by dataset
and as a function of SNR.

Step 3 – Delineation of Volumes of Interest (3 options)
MRI scans were processed using FreeSurfer (http://surfer.nmr.mgh.harvard.edu,
version 5.3). FreeSurfer contains a fully automatic structural imaging pipeline for
processing of cross-sectional as well as longitudinal data. Furthermore, it includes
several features such as skull stripping, B1 bias field correction, non-linear reg-
istration to a stereotaxic atlas, statistical analysis of morphometric differences,
and probabilistic labeling of cortical/subcortical brain structures based on the
Desikan-Killiany atlas [Fischl et al., 2004]. A total of 28 subcortical and cortical
regions were extracted, and averaged across hemispheres producing a final sample
of 14 regions pr. subject/pipeline. The volumetric regions included the amygdala,
thalamus, putamen, caudate, anterior cingulate cortex (ACC), hippocampus, or-
bital frontal cortex, superior frontal cortex, occipital cortex, superior temporal
gyrus, insula, inferior temporal gyrus, parietal cortex, and entorhinal cortex.
These regions were chosen because they largely cover the entire brain, but also
because many of the regions have been used in previously published DASB PET
studies. Out of more than 100 published [11C]DASB-PET studies [A], each region
is mentioned N times: amygdala (N=72), thalamus (N=105), putamen (N=88),
caudate (N=82), ACC (N=74), hippocampus (N=71), frontal cortex (N=66),
occipital cortex (N=48), temporal cortex (N=58), parietal cortex (N=34), en-
torhinal cortex (N=16). Subsequently to running the FreeSurfer pipeline, the
user can choose to perform user-dependent manual edits to the FreeSurfer out-
put, to correct for errors mostly located in the white matter (WM), cerebrospinal
fluid (CSF) or on the pial surface. The manual editing was carried out accord-
ing to FreeSurfer recommendations (https://surfer.nmr.mgh.harvard.edu). If a
T2-weighted MRI is also available, semi user-independent edits can also be made
to the FreeSurfer output by re-running the FreeSurfer reconstruction including
the T2-weighted MRI. I examined all three pipelines in this thesis and now re-
fer to these as FS-RAW (standard output from FreeSurfer), FS-MAN (output
from FreeSurfer with manual edits) and FS-T2P (output from FreeSurfer with
the T2 stream). Only the first test-scan MRI was used for the analysis. Differ-
ent FreeSurfer options are tested, as the optimal correction for errors has been
reported to vary as a function of subject and scanner [McCarthy et al., 2015].
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Although choice of atlas (e.g. PVElab, AAL or MNI305) may have an impact on
the outcome, I considered assessment of various atlas choices to be beyond the
scope of the current work and I consistently applied the Desikan-Killiany atlas
provided in FreeSurfer.

Step 4 – Partial Volume Correction (4 options)
The data were analyzed either without or with three PVC approaches. The VOI-
based PVC technique, Geometric Transfer Matrix (GTM), by [Rousset et al.,
1998] was applied using PETsurfer (https://surfer.nmr.mgh.harvard.edu/), by
for each frame (1) establishing a forward linear model relating [11C]DASB uptake
values to the VOI means (Equation 3.1) and then (2) solving it using the inverse
Equation 3.2.

y = X� (3.1)

�̂ =
�
XTX

��1
XT y (3.2)

where y is a column vector with elements of [11C]DASB uptake values and with
length corresponding to the number of voxels, X is a design matrix with size equal
to the number of voxels (rows) and number of VOIs (columns), � is a row vector
with length equal to the number of VOIs and represents the true underlying
VOI means, and �̂ is the estimate of the VOI means. The design matrix X was
computed by (1) for each VOI, a sparse image of tissue fraction1 (TF) values for
that VOI was created in PET space (2) this image was then smoothed with a
Gaussian kernel corresponding to the PSF of the scanner, and (3) the image was
then reshaped into a column vector and stored in the corresponding column in
X. This procedure was repeated for all VOIs.

Because the PSF for a HRRT scanner reconstructed with a OP-OSEM-PSF algo-
rithm varies from 1-2.5 mm in radial orientation depending on the distance from
the centre of the field of view ([Olesen et al., 2009]), I ran the analyses with the
PSF settings; 0 mm and 2 mm. However, because motion, inhomogeneous tracer
uptake and varying uptake across frames is likely to further increase the spatial
resolution as compared to a point source in [Olesen et al., 2009], I also ran the
PVC analyses with a 4 mm PSF, as used in [Greve et al., 2014]. The PVC step
is evaluated, because it has been suggested to be the optimal solution for VOI
analysis, given that assumptions about the PSF, accurate delineation of regions,
correct PET-MRI registration, and constant uptake within each VOI are satisfied
([Greve et al., 2016]). In addition, a homogeneous CSF and WM segmentation is

1The TF effect is the result of a voxel occupying multiple tissue types. The TF is the fraction
of tissue type (i.e. GM, WM, CSF) inside a given voxel. To create a segmentation in PET
space, each voxel was assigned to the VOI with the highest TF value in that voxel.
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important (provided in FreeSurfer), as these are primary regions to compensate
for in gray matter uptake of the tracer. When the assumptions are satisfied (and
under noiseless conditions), the GTM will provide the exact mean in each VOI.

Step 5 – Kinetic Modeling (4 options)
The Multilinear Reference Tissue Model (MRTM) was applied as described by
[Ichise et al., 2003] with cerebellum (excluding vermis) as a reference region,
allowing for estimation of three parameters from which the BPND can be derived.
The operational equation for MRTM (Equation 3.3) is formulated as,

C(T ) = � V
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where C(t) is the radioligand distribution (MBq/mL) in the target region at time
t, C

0
(t) is the radioligand distribution (MBq/mL) in the reference region, V and

V
0
are the corresponding total distribution volumes (mL/mL), k

0

2 is the transfer
from reference to plasma (min�1), and b is the intercept term.

The second model applied was the Multilinear Reference Tissue Model 2 (MRTM2)
([Ichise et al., 2003]) with cerebellum (excluding vermis) as a reference region
(Equation 3.4). Thalamus, putamen and caudate were averaged to represent a
single less noisy high-binding region for estimation of the rate constant, k

0

2, using
the MRTM model from Equation 3.3,

C(T ) = � V

V 0b

 Z T

0

C
0
(t)dt+

1

k
0
2

C
0
(T )

!
+

1

b

Z T

0

C(t)dt (3.4)

The MRTM2 is similar to MRTM, except that k
0

2 is determined after an initial
iteration of MRTM and its value is subsequently entered into the two-parameter
MRTM2 model. This approximates to a linear kinetic analysis, but is executed
in only a fraction of the computational time.

The third model applied was the simplified reference tissue model, SRTM, as
described by [Lammertsma and Hume, 1996] (Equation 3.5).
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SRTM allows for nonlinear least squares estimation of three parameters (R1, k2

and BPND) from each TAC. R1 is the relative radioligand delivery and k2 is the
rate constant for transfer from free to plasma (min�1).

The non-invasive Logan reference tissue model was applied as described in [Logan
et al., 1996] with t* = 35 minutes for all regions and subjects (Equation 3.6)
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where DVR is the distribution volume ratio. The non-invasive Logan also assumes
the existence of a valid reference region and requires the estimation of k

0

2, similarly
as for MRTM2. The BPND can subsequently be estimated as BPND = DV R �
1. All kinetic models applied in this work were implemented in MATLAB v.
2016b as specified in their original paper. The implementation in MATLAB was
validated with PMOD v. 3.0 (10 subjects < 0.1% difference in BPND), but was
carried out in MATLAB for parallel execution purposes to substantially reduce
processing time. Different kinetic modeling approaches are tested in this thesis,
as the optimal estimation of 5-HTT binding may vary as a function of SNR,
subject and region.

Figure 3.1: Schematic overview of the various preprocessing steps applied for
the [11C]DASB quantification. There are 384 different preprocessing strategies
in total. Abbreviations; average (avg), time-weighted average (twa), signal-
to-noise ratio (SNR), Geometric Transfer Matrix (GTM).
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3.4 Statistical Analysis

3.4.1 Performance Metrics of Reproducibility

In this section, I introduce the performance metrics of reproducibility used to
measure the effect of different preprocessing choices in the test-retest data con-
sisting of 30 participants. While most of these metrics were computed for each
region k and summarized over subjects i, I also adopted a reproducibility metric
from the fMRI literature producing a single reproducibility measure for each sub-
ject i and pipeline j, using the linear relationship between all VOIs [Strother et al.,
2002]. I used statistical subsampling to evaluate sample sizes of either ~n = 10
or 20 subjects randomly selected without replacement from the 30 subjects, and
this was repeated 1000 times to compute a mean estimate and a 95% confidence
interval (CI). Notation-wise, ~n indicates a resampling analysis, whereas N = 30
indicates that all subjects were used to compute the metric. Statistical differences
in pipeline choice (e.g., motion correction vs. no motion correction (nMC)) for
each performance metric was determined across 1000 resamples (subsampling 20
subjects without replacement), and then using the empirical distribution of the
differences of the performance metric. This provides an empirical p-value for the
difference between pipeline choices for each performance metric. Correction for
multiple comparisons across regions was carried out using False-Discovery Rate
(FDR, [Benjamini and Hochberg, 1995])), at FDR=0.05. BPND’s that were less
than 0 or larger than 10 in either test or retest were excluded in all estimations
to avoid the influence of outliers.

Test-retest bias
The test-retest bias was computed as the difference between the two measure-
ments and expressed as a percentage relative to the first scan,

Biasi;j;k = 100� retesti;j;k � testi;j;k
testi;j;k

(3.7)

Within-Subject Variability
The within-subject variability was computed as the standard deviation of the bias
[Kim et al., 2006], and then normalized to a coefficient of variation (expressed in
percent) by dividing by the group average value, �,
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where di;j;k = testi;j;k � retesti;j;k, �dj;k = 1
~n

P~n
i=1 di;j;k and S is the number of

sub-samples (i.e. outliers excluded).

Between-Subject Variability
The between-subject variability was computed as the between-subject standard
deviation, �, and then normalized to a coefficient of variation (expressed in per-
cent) by dividing by the group average, �,

BSVj;k = 100� �j;k
�j;k

(3.9)

Intra-Class Correlation
The test-retest reliability was estimated using the intra-class correlation coeffi-
cient (ICC),

ICCj;k =
MSBSj;k �MSEj;k

MSBSj;k + (q � 1)MSEj;k
(3.10)

where MSBS is the mean sum of squares between subjects, MSE is the mean
squared error, and q is the number of within-subject measurements (= 2 in our
case).

Sample Size Estimation
The needed sample size, n̂, to show an effect E at a 95% confidence level for
pipeline j and region k was computed as,

n̂j;k =

�
1:96� �j;k

Ej;k

�2

(3.11)

where � is the BSV.

Global Signal-To-Noise Ratio (gSNR)
A global reproducibility metric (gSNR) was computed for each subject i and
pipeline j, by taking the pairwise linear correlation based on the Pearson corre-
lation coefficient (R) over all regions based on test and retest BPND’s,

gSNRi;j =

s
(1 +Ri;j)� (1�Ri;j)

(1�Ri;j)
(3.12)
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Initially described in [Churchill et al., 2012], the optimal fixed pipeline across
regions was computed as: (1) for each subject, rank the pipelines 1-384 based
on gSNR, with a higher rank indicating better performance (i.e., higher gSNR).
Then (2) compute the median ranking across subjects, and select the pipeline
with highest median rank as the optimal fixed choice (FIX), and (3) perform a
non-parametric Friedman test on the pipeline rankings to determine if there is a
significant ordering of fixed pipelines across subjects. If this test is significant,
perform a post-hoc estimation of the critical-difference cut-off at �=0.05, based
on the Dunn-Sidak test. If the difference in median ranks between two pipelines
is higher than the cut-off, it indicates that the pipelines are not statistically
distinguishable in performance. This procedure may be used to identify a list of
optimal fixed pipelines that are not significantly worse than FIX.

3.4.2 Statistical Analysis Models

The main univariate analysis model applied in this thesis was the paired t-
test, determining whether the mean difference in BPND between two sessions as
a function of pipeline j and region k is zero. All data was tested for normality
using a Kolmogorov-Smirnov (KS) test. Within each pipeline, j, the regions were
corrected for multiple comparisons using FDR at q = 0.05. A p-value less than
0.05 was considered a significant result.

Throughout this thesis, I also deployed a multivariate Linear Discriminant
Analysis (LDA) model for prediction of two-class classification problems. For
this two-class dataset X, LDA estimates an optimal discriminant that maximizes
the ratio of between-class covariance to within-class covariance. We can write the
conditional posterior probability of X originating from class Ck as the following:

p(XjCk; �) =
1p
2�
expf�1

2
jjLtrain

T (X� �Xk
train)jj2g (3.13)

where �Xk
train is the training data mean from class Ck, and Ltrain is a linear

transformation matrix normalized so that training variance is unity. From Equa-
tion 3.13, we can estimate the posterior probability of correct class assignment
p(CkjX; �). The model was trained by subsampling 80% of the data in a 5-fold
cross-validation framework (Figure 6.1). The model was then evaluated using a
validation set, X, consisting of the remaining 20%. The validation data was inde-
pendent of the training data and completely held out of the training procedure.
The subsampling procedure was repeated so that each label was assigned to the
validation data exactly once. The entire cross-validation framework was repeated
10 times to obtain an unbiased mean classification accuracy [Varoquaux et al.,
2017]. The significance of each model was estimated by randomly permuting the
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labels 1000 times and rerunning the above 10 randomized 5-fold cross-validation
procedure to generate an empirical null-distribution. This provides an empirical
p-value for each model and pipeline.

Figure 3.2: Overview of the nested cross-validation schema with M repeti-
tions, 80% training data, and 20% validation data, for each pipeline j.



Chapter 4
Study 1: Preprocessing
Strategies in the PET

Literature

4.1 Introduction

This chapter is adapted from the peer-reviewed journal article [A]: Nørgaard M,
Ganz M, Svarer C, Feng L, Ichise M, Lanzenberger R, Lubberink M, Parsey RV,
Politis M, Rabiner EA, Slifstein M, Sossi V, Suhara T, Talbot PS, Turkheimer F,
Strother SC, Knudsen GM. Cerebral Serotonin Transporter Measurements with
[11C]DASB: A Review on Acquisition and Preprocessing across 21 PET Centres.
Journal of Cerebral Blood Flow and Metabolism, 2019 Feb;39(2):210-222. DOI:
10.1177/0271678X18770107.

Since the introduction of [11C]DASB-PET in November 2000 [Houle et al., 2000],
hundreds of PET studies have been carried out. Several of these studies have
reported less 5-HTT binding in depressed patients compared to healthy individ-
uals [Parsey et al., 2006a, Hammoud et al., 2010]. Other studies have reported
on the relationship between levels of 5-HTT occupancy and doses of SSRIs to
achieve a therapeutic effect [Meyer et al., 2001, Parsey et al., 2006b]. Common
for all [11C]DASB-PET studies is that they rely on valid quantification of 5-HTT
binding to produce valid results and conclusions. However, it is currently unclear
how much the data-analysis chain varies in the literature, and more importantly
how these variations may have affected the reported findings. In this Chapter, I
systematically review the literature on differences in subject selection, data ac-
quisition and preprocessing in 105 studies applying the radioligand [11C]DASB.
To quantify the influence of each step, I also extract the available average BPND’s
in healthy participants in the striatum and ACC from 90 of the 105 studies, and
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use linear models to associate the BPND’s with the different steps in the data
acquisition and preprocessing stages. To ensure accuracy in my interpretations,
I invited relevant co-authors of the 105 published studies to make contributions
and comment on the work.

4.2 Methods

In this section, I establish the procedures for generating an overview of the avail-
able steps of data acquisition and preprocessing in [11C]DASB-PET studies in
the literature.

4.2.1 The Data-Analysis Chain

Subject Selection: The variation in subject selection across studies was ex-
tracted by categorizing each group of subjects into either healthy participants
(control group) or a specific patient cohort (e.g. Alzheimer’s Disease).

Data Acquisition: The variation in data acquisition across studies was estab-
lished by defining six main categories that could vary between PET centres,
scanners and subjects. These categories included the (1) MRI scanner type, (2)
PET scanner type, (3) PET scan duration, (4) number of frames, (5) injected
dose, and (6) reconstruction type.

Preprocessing: The variation in preprocessing across studies was extracted by
categorizing each study into all five main categories (1) MC, (2) co-registration,
(3) VOI technique, (4) PVC technique, and (5) kinetic modeling.

Statistics: The available group average BPND and standard deviation in the
striatum and ACC was extracted for healthy participants from each study. These
values were used as the dependent variable in separate linear regression models,
with the independent variables: number of participants in the study, age, age
standard deviation, MRI scanner type, PET scanner type, number of frames,
injected dose, MC (yes/no), VOI technique, and kinetic modeling technique. All
covariates were standardized columnwise to have mean 0 and standard deviation
1. There were 50 studies reporting striatal BPND and 43 studies reporting ACC
BPND that had information for all of the independent variables.
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4.3 Results

4.3.1 Subject Selection

Figure 4.1 shows the number of available [11C]DASB-PET data sets in the lit-
erature and as a function of time. The majority of [11C]DASB-PET data sets
are healthy subjects, summing to a total of 1856 available data sets. The second
largest group is Major Depressive Disorder (MDD) with 234 available data sets.
In a linear model with between-subject variation in ACC as the dependent vari-
able, and the independent variables (i.e. number of participants in the study, age,
age standard deviation, MRI scanner type, PET scanner type, number of frames,
injected dose, MC (yes/no), VOI technique, and kinetic modeling technique), I
identified a significant trend for an age effect (p = .075, uncorrected), suggesting
that BPND is more variable in elderly than in younger subjects.

Figure 4.1: Timeline of number of patient and healthy controls in the 105
published [11C]DASB studies. The colors indicate either healthy controls, or
a specific disorder as a function of time and sample size. ADHD: attention-
deficit/hyperactive disorder; MDD: major depressive disorder; MDMA: ec-
stasy; HIV: human immunodeficiency virus; OCD: obsessive compulsive disor-
der; SAD: seasonal affective disorder; PTSD: post-traumatic stress syndrome;
PD: Parkinson’s disease.
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4.3.2 Data Acquisition

Across 21 PET centres, 9 different PET scanners have been used (Figure 4.2).
The most commonly used PET scanners are the ECAT EXACT HR+ scanner
and the GE Advance scanner, having a spatial resolution ranging from 4.3-8.3
mm FWHM. The MRI scanners vary in field strength from 0.3T to 7.0T, with the
most widely used acquisitions of 1.5T (43%) or 3.0T (32%). The duration of the
dynamic PET scan varied from 30-120min (30,60,80,90,95,100,110,120min), with
90 minutes being the most frequent choice. The framing of the dynamic PET
data had been used in 17 different ways, ranging between 17 and 50 frames, with
26 frames being the most common. The injected dose varied from approximately
100 MBq to 740 MBq across subjects and studies. Finally, the main types of
reconstruction that had been applied were either Filtered backprojection (FBP)
or Ordered-Subset Expectation Maximation (OSEM), with FBP being the most
frequent. To summarize the data acquisition stage, the most widely published
workflow consists of: 1.5T MRI (43%), ECAT EXACT HR+(43%), 90-min ac-
quisition (65%), 26 frames (17%), and FBP to reconstruct the 4D PET data
(72%).

Figure 4.2: Schematic overview of the different data acquisition workflows
used to acquire dynamic [11C]DASB data. The workflow consists of scanners
providing anatomical information, i.e. MRI scanners at various field strengths
(Tesla), various PET scanners, duration of the dynamic PET acquisition,
frame sequence used to temporally acquire 4D [11C]DASB data, injected dose
(ranging from approximately 100-740 MBq), and finally the reconstruction
methods used to reconstruct the 4D PET sequence. The colors indicate the
frequency per step that has been applied in a [11C]DASB PET study out
of the total 105 studies. Injected dose is filled as white, because it spans a
continuous range and is highly subject-specific. The 4D imaging data are
the output of the data acquisition workflow and input to the preprocessing
workflow.
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4.3.3 Preprocessing

Between-frame MC of the PET data was applied in 59% of studies, whereas 41%
left out MC. The MC procedure mainly varied between the registration to either
(1) a frame with high SNR or (2) a mean/summed PET image. Co-registration
between PET and MRI was mainly carried out using NMI (98%), whereas the
remaining 2% used BBR. The PET image used for co-registration was predomi-
nantly either a frame with high SNR or a mean/summed image. For delineating
VOIs, 8 different techniques had been applied, with manual delineations being
the most frequent (38%). PVC had only been applied in 4 published studies.
Kinetic modeling was applied in 9 different ways, mainly dividing the methods
into reference tissue methods and methods using an arterial input. The most
commonly applied kinetic model was the MRTM2 (38%). In a linear model with
between-subject variation in striatum as the dependent variable, and the inde-
pendent variables (i.e. number of participants in the study, age, age standard
deviation, MRI scanner type, PET scanner type, number of frames, injected
dose, MC (yes/no), VOI technique, and kinetic modeling technique), I identified
a significant trend for an effect of MC (p = .064, uncorrected), suggesting that
MC lowers between-subject variability with 0.035 compared to data without MC.
This translates into 26% fewer subjects needed in a group analysis to obtain the
same statistical power.

Figure 4.3: Schematic overview of the various preprocessing steps used in
analyzing dynamic [11C]DASB data. This ranges from different motion correc-
tion techniques, co-registration, volume-of-interest definitions, partial volume
correction, and kinetic modeling. The colors indicate the percentage, in which
a given step has been applied in the 105 [11C]DASB-PET studies.

4.3.4 Statistical Analysis

Figure 4.4 shows a histogram of the group average BPND and between-subject
variability (expressed as a coefficient of variation, CV) in the striatum and across
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studies. The CV ranged from 2.8% to 24.4% with the majority of studies pro-
ducing a CV ranging from 3 to 11%. The sample size varied from 4 to 144 with
the majority of studies using between 10 and 20 subjects.

Figure 4.4: Striatal (A) group average BPND (B) standard deviation (C)
between-subject variability expressed as a coefficient of variation (ratio of
the standard deviation to the mean, CV), and (D) sample size in groups of
healthy participants across 50 [11C]DASB-PET studies.

4.4 Discussion

In this Chapter, I demonstrated that most [11C]DASB-PET experiments are per-
formed under the implicit assumption that the results they generate are either
(1) insensitive to the preprocessing strategy or (2) standard preprocessing strate-
gies produce near-optimal results. Combinatorially, there are 21.150.720 different
workflows in the [11C]DASB-PET literature that have been used for quantifica-
tion of 5-HTT binding. For preprocessing only, there are at least 1440 combina-
tions that have been applied in the literature, ranging from differences in MC,
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co-registration, delineation of VOIs, PVC and kinetic modeling.

Current results demonstrate that frame-based MC lowers between-subject vari-
ability in the striatum, which is consistent with previous reports showing that
MC lowers variability [Chen et al., 2018, Montgomery et al., 2006]. In spite
of these reports, many recent studies do not include MC in their preprocessing
strategy and without justification (e.g., [Zientek et al., 2016, Hinderberger et al.,
2016, Frick et al., 2015]). Uncorrected head motion reduces the measured activity
[Jin et al., 2013], and frame-based MC without redoing the PET reconstruction
may introduce attenuation correction errors. This latter correction is often ne-
glected [van den Heuvel et al., 2003]. The relatively small effect of MC may be
due to limited head motion in the data without MC, a potential consequence
of subjects being carefully instructed to remain still inside the scanner, despite
the long scan time. In the absence of motion, MC will lead to some degree of
smoothing due to an interpolation, which may explain the reduced variability.

From a statistical perspective, each PET workflow can be considered a statistical
model used to estimate the true underlying BPND. However, as all models can be
characterized in terms of its bias and variance, there is a bias-variance trade-off
to consider. This means, that every time variance is reduced (e.g. by performing
MC) we introduce a bias in the BPND estimate that will make it deviate from its
true value. The result of our analyses in this study is an approximation of the
null distribution of BPND and between-subject variability, respectively, across
subject selection, data acquisition, and preprocessing. These null distributions
capture the expected value and the total variation from the applied models in the
literature (i.e. PET workflows). In order to decompose the total variation into
components of subject selection, data acquisition and preprocessing one can fix
two of the components, while varying the third. This can be done by considering
a data set of N subjects (assumed to represent the entire population) that have
undergone the same PET data acquisition. This data set can then be preprocessed
in various ways to not only capture the total variation of preprocessing, but also to
capture the contribution from each preprocessing step. The data set can further
be expanded to include a repeated measurement on the same subject, to provide
the variability of repeated measures. The variability of repeated measures is
important knowledge because it will reflect our ability to detect differences in
binding following an intervention.

In the next Chapter, I will use a test-retest data set to evaluate the impact of
a subset of the identified preprocessing choices on measures of bias, between-
subject and within-subject variability. Based on the evaluation, I will provide
recommendations for an optimized preprocessing strategy that is optimal for a
given study design (cross-sectional or longitudinal) across all brain regions, or
with an a priori hypothesis for a specific brain region. Finally, I will update
Figure 4.4 with the new results of the distribution arising from the preprocessing
of the group average BPND and the corresponding standard deviation.
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Chapter 5
Study 2: Evaluation and

Optimization of
Preprocessing

5.1 Introduction

This chapter is adapted from the peer-reviewed conference article Nørgaard et al.,
2018c ([C]) and the submitted journal article Nørgaard et al., 2019 ([B]).

In Chapter 4, I showed that the impact of data acquisition and preprocessing
seems to be an overlooked aspect in modern PET neuroscience with 21.150.720
available workflows in the [11C]DASB-PET literature. I demonstrated that the
assumption that the outcome of a PET study is insensitive to preprocessing does
not hold. This suggests that there may be an advantage of identifying a prepro-
cessing strategy that is more optimal than others across both subjects and regions.
Furthermore, because different regions have differences in structure (gyrification
and thickness), signal and noise, there may exist distinct preprocessing strategies
that are optimal for each specific brain region.
The effects of preprocessing strategy have been investigated in numerous studies
by [Montgomery et al., 2006], [Jin et al., 2013], [Schwarz et al., 2017], [Schain
et al., 2014], [Greve et al., 2016], [Ichise et al., 2003] and [Ogden et al., 2007],
among others, who showed that MC, co-registration, delineation of VOIs, PVC
and kinetic modeling have impact on PET results. In this Chapter, I extend
the work of previous studies to examine a set of commonly used preprocessing
strategies from the literature, including their interactions.
The main goal of this Chapter is to implement a framework for measuring the
performance of preprocessing choices, and to provide recommendations on the
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optimal pipeline. The performance metrics are based on reproducibility and pre-
diction, and the framework is designed to be used in the early test-retest stage
for a new radioligand, where recommendations are made to the community for
subsequent studies.

The framework was used to show the primary results: (1) there exists a
pipeline that is optimal for all subjects and across brain regions. How-
ever, (2) there exists a heterogeneous set of region-specific pipelines
that outperform the optimal pipeline for all regions. Finally, (3) I
demonstrate that univariate and multivariate analysis models used to
detect differences in BPND between scan sessions are preprocessing
dependent.

5.2 Methods

In this section, I establish a framework for selecting (1) an optimal pipeline suit-
able to all subjects and brain regions, and (2) an individually optimized pipeline
for each specific region. First, I discuss the Data-Analysis Chain (Chapter 5.2.1).

5.2.1 The Data-Analysis Chain

Subject Selection: 30 healthy female participants were included in the study
(mean age: 25�5.9 years, range: 18-37). Details are provided in Chapter 3.1.

Data Acquisition: All participants were PET scanned twice on separate days
with the same imaging protocol. The participants received a placebo treatment
between scans, and are therefore considered to represent test-retest. Details are
provided in Chapter 3.2.

Preprocessing:
The preprocessing steps are listed in Chapter 3.3 in the order in which they were
applied. Specific rationales for including/excluding each unique preprocessing
step and their options are listed in Chapter 3.3.

Statistical Analysis:
I evaluated and optimized the preprocessing pipeline using statistical perfor-
mance metrics related to reproducibility: test-retest bias, within-subject variabil-
ity (WSV), between-subject variability (BSV) and the Intraclass Correlation Co-
efficient (ICC). The interactions of preprocessing steps in the pipeline were mea-
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sured, by testing all possible combinations of MC (two choices), co-registration
(four choices), delineation technique (three choices), PVC (four choices) and ki-
netic modeling (four choices). This resulted in 2� 3� 43 = 384 combinations of
preprocessing. Details are provided in Chapter 3.4.1. For the false-positive anal-
ysis, I used univariate (paired t-test) and multivariate (LDA) analysis models as
described in Chapter 3.4.2.

5.2.2 Preprocessing Optimization Across Subjects and Re-
gions

The reproducibility of BPND estimates across subjects and regions are known to
be heterogeneous [Ogden et al., 2007, Zanderigo et al., 2017]. To identify an op-
timal preprocessing strategy across subjects and regions ("FIX" pipeline), I used
a non-parametric technique with the gSNR metric to measure the performance of
preprocessing, as described in detail in Chapter 3.4.1 (Figure 5.1). The technique
is a conservative approach for identifying a set of optimal preprocessing strategies
across subjects and regions at 95% confidence.

Figure 5.1: Framework to identify an optimal preprocessing pipeline across
subjects and regions. (A) For subjects i=1,...,30, measure the gSNR for all
pipeline combinations. (B) For each subject, rank pipelines according to the
gSNR with the highest rank being the best (red) and lowest rank being the
worst (blue) (C) Obtain pipeline rank profiles for all subjects, and take the
median rank of each pipeline, across subjects. The significance of the median-
rank profile, can be assessed using a Friedman rank test.

5.2.3 Region-Specific Preprocessing Optimization

I identified the set of preprocessing combinations that minimized the BSV and
WSV, respectively, or maximized ICC for each region. To stabilize the perfor-
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mance metrics and to remove subject-specific artefacts I used statistical subsam-
pling, selecting a subset of 20 subjects without replacement, and this was repeated
over 1000 iterations to compute a mean estimate and a 95% confidence interval.
Then, I examined the differences in performance between the optimal pipeline
across subjects and regions, and the region-specific optimal pipeline. Details are
provided in Chapter 3.4.1.

5.3 Results

5.3.1 Test-retest Bias

Figure 5.2 plots the percent bias between test and retest BPND as a function of
preprocessing strategy in the occipital cortex. Across regions, 98% of all tested
pipelines, showed a negative bias (range: -6% to 0%). This means that the BPND
was lower on the second scan compared to the first scan.

Figure 5.2: Test-retest bias (%) as a function of pipeline for the occipital
cortex, when SRTM is applied. The use of motion correction generally de-
creases the bias (range: -1% to -4%). This is highlighted by the three plots
in the bottom, showcasing the test-retest effect on BPND.
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5.3.2 Within- and Between-Subject Variability

Figure 5.3A and 5.3B show the WSV and BSV across brain regions, and as a
function of the preprocessing step MC (with/without). In Figure 5.3C and 5.3D
the WSV and BSV are shown for noPVC vs. GTM with 4 mm. Figure 5.3E and
5.3F display the WSV and BSV for SRTM vs. MRTM2.

Figure 5.3: (A-B) within- and between-subject variability for 14 regions
with or without motion correction, including a 95% confidence interval (C-
D) similar to A and B, but with either no partial volume correction (noPVC)
or with the Geometric Transfer Matrix with a 4 mm PSF (GTM4) (E-F)
similar to A and B, but with the Simplified Reference Tissue Model (SRTM)
or the Multilinear Reference Tissue Model 2 (MRTM2). * P < 0.05, ** P <
0.01, *** P < 0.001, FDR corrected for multiple comparisons (FDR=0.05).
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5.3.3 Preprocessing Optimization Across Subjects and Re-
gions

Figure 5.4: Median rank profile for all pipelines across all subjects. The
shaded errorbars indicate 95% confidence intervals. The optimal pipeline
across subjects and regions (FIX) is visualized by the black bold circle. The
horizontal dotted line indicates that pipelines below this line are significantly
different from FIX. The pipelines above the cut-off are not significantly dif-
ferent from each other.

The median-rank profile for the assessment of relative pipeline performance for
each pipeline and across all brain regions is shown in Figure 5.4. I identified a sig-
nificant pipeline effect across subjects (p < 0.0001, Friedman test), suggesting the
existence of an optimal preprocessing pipeline across regions and subjects. The
highest median rank was achieved with the preprocessing strategy: MC, BBTWA,
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FS-RAW, noPVC, and MRTM2. I also identified a set of other pipelines, that
were not significantly different than FIX (Dunn-Sidak test, corrected for multiple
comparisons for all possible pairwise combinations, p = 0.05). The pipelines be-
low the dotted horizontal line in Figure 5.4 are significantly different from FIX.
MC consistently increased the median rank. The rank for MRTM2 with ei-
ther MC or nMC were not significantly different from each other, whereas the
non-invasive Logan, SRTM and MRTM showed significantly higher rank after
the application of MC (non-overlapping CI’s). The application of PVC gener-
ally decreased the median rank with increasing PSF. The application of PVC
and MRTM2 did not affect the median rank, whereas the application of PVC
with other choices of kinetic models significantly lowered the median rank. Co-
registration with the time-weighted PET image marginally increased the median
rank, but only when MC was not included in the pipeline. When MC was ap-
plied, the choice of co-registration only resulted in minor effects on the rank. The
choice of delineation technique did not affect the rank.

5.3.4 Region-Specific Preprocessing Optimization

Table 5.1 summarizes the results of region-specific optimization, where the pipeline
strategy that optimizes each performance metric for each specific region is listed.
In going from FIX to an optimal region-specific preprocessing strategy, the BSV
was reduced (range: 0% to 8%) in CV (mean change of 3.6�2% from FIX;
p=0.0001, Wilcoxon signed rank test) with amygdala and superior frontal cortex
showing the largest improvements (8% and 5%, respectively). The WSV was re-
duced (range: 0% to 5%) in CV (mean change of 1.7�1.56% from FIX; p=0.0006,
Wilcoxon signed rank test) with ACC (3%), orbital FC (3%), superior FC (5%),
and parietal cortex (4%) showing the largest reductions. Across regions, use of ei-
ther MRTM or MRTM2 consistently reduced the WSV. The application of GTM
with a 4 mm PSF minimized the BSV in all regions, except in the amygdala, tha-
lamus and hippocampus. The WSV was also minimized following GTM4, except
in the insula and entorhinal cortex.
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Table 5.1: Overview of optimal pipelines for 14 brain regions, when op-
timized by median-rank (FIX), within-subject variability (WSV), between-
subject variability (BSV) and intra-class correlation (ICC). 1st letter (Delin-
eation of regions; A=FS-raw, B=FS-man, C=FS-T2p), 2nd letter (Motion
Correction (MC); A=MC, B=noMC), 3rd letter (Co-registration; A=BBtwa),
B=NMItwa), C=BBavg, D=NMIavg), 4th letter (Partial Volume Correction
(PVC); A=noPVC, B=Geometrix Transfer Matrix (GTM) 0 mm, C=GTM 2
mm, D=GTM 4 mm), 5th letter (Kinetic modeling; A=MRTM, B=MRTM2,
C=SRTM, D=Non-invasive Logan).

FIX WSV BSV ICC

Amygdala AAAAB CBBCB BAAAD ABACB
Thalamus AAAAB BAAAA ABBAD BABDA
Putamen AAAAB CAAAA CADDA AABDA
Caudate AAAAB CAADB CADDA AAADB
Anterior Cingulate AAAAB BBADB ABDDD CBADB
Hippocampus AAAAB BBBAB ABBAD CBBCB
Orbital FC AAAAB BBBDB CBDDD BBADB
Occipital C AAAAB BABDB ABDDC CABDA
Superior FG AAAAB ABCDB ABBDA CBADC
Superior TG AAAAB BBBDB AABDD BBABB
Insula AAAAB CABBA BABDD CBBDB
Medial-Inferior TG AAAAB BBBDB BABDB CBBDB
Parietal C AAAAB ABADA ABCDB BBABC
Entorhinal C AAAAB CABAB CBBDD BABDB

5.3.5 False-Positive Analysis

As the data originates from a test-retest study there should be no differences
in BPND between test and retest. Therefore, significant differences between test
and retest are considered a false-positive. The univariate paired t-test was used
to detect statistical mean differences in BPND between test and retest across
regions and pipelines. The results are summarized in Figure 5.5 with/without
correction for multiple comparisons using FDR, with higher FPR being worse.
Without correction, 36% of the tests across regions and pipelines resulted in a
significant result (p < 0.05). With correction, the FPR was 2.5% across regions
and pipelines. The preprocessing choices that contributed to the false-positives
were mainly MC in combination with the kinetic models, SRTM and MRTM.
The multivariate analysis using LDA was used for predictive classification of test
(class 1) and retest (class 2) BPND. The results of the multivariate analysis are
summarized in Figure 5.7. Depending on the preprocessing strategy, classification
accuracies varied from 37% to 70%, with a mean accuracy of 51%. The pipeline
that provided the highest classification accuracy (63.3%, p = 0.12) was: noMC,
NMIAVG, FS-T2p, noPVC, and MRTM. For this pipeline, one of the 10 repetitions
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of the 5-fold cross-validation resulted in a classification accuracy of 70%, and
therefore significantly different from its permuted null-distribution (p = 0.01).

Figure 5.5: (A) Number of significant results (paired t-test, p < 0:05) in
384 pipelines divided by 384, expressed as a percentage for 14 brain regions.
Blank is not corrected for multiple comparisons, whereas green is corrected
using FDR. (B) Number of significant results (paired t-test, p < 0:05) in 384
pipelines divided by 384, expressed as a percentage for 14 brain regions (cor-
rected for multiple comparisons at FDR=0.05 within each pipeline). The
five vertical bars within each region represent the distribution of choices,
and has the order: 1. VOI (1=FS-RAW, 2=FS-MAN, 3=FS-T2P), 2. MC
(1=yes, 2=no), 3. Co-reg (1=BBavg, 2=NMIavg, 3=BBtwa, 4=NMItwa), 4.
PVC (1=noPVC, 2=GTM0, 3=GTM2, 4=GTM4), 5. KinMod (1=MRTM,
2=MRTM2, 3=SRTM, 4=Logan)

Figure 5.6: (A) Normalized distribution of classification accuracies (%) for
10 times repeated 5-fold cross-validation and for 384 different preprocessing
choices (B) Normalized distribution of 1000 permuted classification accuracies
(%) for the pipeline maximizing the classification accuracy in (A). The black
bars are the classification accuracy for 10 individual repetitions for the pipeline
and the blue bar is the mean classification accuracy over the 10 repetitions.
One of the repetitions by chance produces a classification accuracy higher
than the 95% significance level (red vertical dotted line).
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5.4 Discussion

The study in this chapter establishes a comprehensive preprocessing framework
for measuring the effect of preprocessing steps and their interactions on measures
of bias, WSV and BSV, needed sample size and the FPR. I also established the
heterogeneity of region-specific variability in response to preprocessing strategy,
and present the first evaluation of interactions between MC, co-registration, de-
lineation techniques, PVC and kinetic modeling in the quantification of binding
using dynamic PET.

Independent of preprocessing strategy, I demonstrated that BPND was lower at
the second scan compared to the first. This observation has also been demon-
strated previously [Kim et al., 2006], reporting a bias ranging from 2.5% to 7.5%.
Two other test-retest studies using [11C]DASB-PET [Frankle et al., 2004, Ogden
et al., 2007] did not apply a bias metric in their examination. The bias may be
the result of a true biological effect, but it may also be introduced in the data
acquisition and/or preprocessing stage. If the bias is determined by biological
processes it means that attempts to identify a pipeline minimizing the bias is
counter productive. For example, if an intervention acts to increase the binding,
the negative bias may cancel out the effect of the intervention.

Optimization of preprocessing across subjects and regions, identified a set of op-
timal preprocessing strategies showing significant effects for MC, co-registration,
PVC and kinetic modeling. Replicating previous findings, I demonstrated that
MC is an important step in the pipeline to increase reproducibility. MC has
previously been shown to significantly affect PET results [Montgomery et al.,
2006, Jin et al., 2013], but despite these reports, 40% of [11C]DASB-PET studies
left out MC in their analysis (A). While MC generally improved reproducibility
across regions and subjects, I also identified a set of regions (thalamus, caudate,
medial-inferior TG and entorhinal cortex) that had significantly lower within-
subject variability following MC. Thalamus and caudate have often been used as
high-binding regions for estimation of k

0

2 [Frokjaer et al., 2015, Nørgaard et al.,
2017], and the variability coming from this estimation will be transferred into the
kinetic models using the estimate (i.e. MRTM2 and non-invasive Logan). This
will have an impact on the estimation of the BPND in the whole brain [Ichise
et al., 2003, Mandeville et al., 2016]. Putamen was the region least affected
by preprocessing strategy, minimizing both WSV and BSV relative to thalamus
and caudate. Therefore, to minimize potential biases originating from subject-
dependent differences, the putamen as a high-binding region is suggested to be
used as an optimal choice in future studies.

The performance of the rank-analysis was largely dependent on the use of noPVC
or GTM, with the latter contributing negatively to the rank. These results differ
from [Greve et al., 2016], who suggested that the GTM was the preferred method
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for VOI analysis. The cause for this discrepancy is related to a distinct difference
in PVC performance across subcortical and cortical regions (Figure 5.3). The
application of GTM resulted in a significant decrease in WSV in most cortical
regions, whereas it significantly increased both WSV and BSV in the amygdala,
thalamus and hippocampus. The effect may be attributed to PVEs being more
correlated with the cerebellum in these regions, resulting in unstable estimates
of BPND [Greve et al., 2016]. The findings highlight the utility of using multiple
performance metrics over any single metric [Churchill et al., 2012, Churchill et al.,
2015].

I also identified a trade-off in WSV and BSV at the group level. Minimization
of BSV increased WSV relative to the FIX pipeline, particularly when applying
the non-invasive Logan. Quantification using the non-invasive Logan is often
preferred, as it produces a low between-subject coefficient of variation [Tyrer
et al., 2016, Logan et al., 1996] at the expense of a bias. I demonstrate that the
consequence of choosing non-invasive Logan to decrease BSV is a 3-5% increase
in WSV (B). These findings indicate that depending on the experimental design,
the choice of preprocessing should be selected with caution and with careful
consideration of the study goals. The variability of the measured variable (i.e.
BPND) will also influence the statistical power of a study [Whitley and Ball,
2002]. However, while the sample size required to show an effect on a variable,
is ultimately determined by the variability of the variable, studies may become
underpowered if incorrect variability measures are used [Button et al., 2013].

The comparison of univariate and multivariate analysis models and their impact
on the false-positive rate provided insight into the effects of preprocessing on the
detection of differences between test and retest BPND. The univariate model
with varying preprocessing choices, was still able to detect significant differences,
despite correcting for mulitple comparisons. Correction for multiple comparisons
should therefore always be carried out to limit the inflation of false-positive re-
sults [Bennett et al., 2009]. The multivariate model with varying preprocessing
choices, was not able to detect any false positives, evaluated with cross-validation
and permutations. This may be caused by reduced power in the cross-validation
due to splitting of the data, but it may also be due to adequate model gener-
alizability [Varoquaux et al., 2017] compared to the overfitted univariate model.
Given that the data is test-retest, there should be no detectable differences. The
current results demonstrate that univariate models are more sensitive to prepro-
cessing choice, and unless corrected for multiple comparisons, results in increased
false-positive rates. Based on these results, I suggest that care must be taken in
the analysis of longitudinal data to avoid attributing an effect to a treatment/-
condition that was due to the retest alone.

Finally, to round of this chapter, I update Figure 4.4 from Chapter 4 with the re-
sults of the preprocessing framework obtained in the current chapter (Figure 5.7)
and compare them with the literature. The results indicate that preprocessing
is responsible for nearly 50% of the total variation in the average BPND in the
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