Small Animal Imaging

Clara Aabye Madsen

M.Sc., PhD student

Neurobiology Research Unit

Department of Neurology, Neuroscience Center Copenhagen University Hospital, Rigshospitalet Denmark

Rigshospitalet

UNIVERSITY OF COPENHAGEN FACULTY OF HEALTH AND MEDICAL SCIENCES

Animal Imaging

Clara Aabye Madsen

M.Sc., PhD student

Neurobiology Research Unit

Department of Neurology, Neuroscience Center Copenhagen University Hospital, Rigshospitalet Denmark

Neurobiology Research Unit Rigshospitalet Copenhagen University Hospital

Rigshospitalet

UNIVERSITY OF COPENHAGEN FACULTY OF HEALTH AND MEDICAL SCIENCES

Animal Brain Imaging

Clara Aabye Madsen

M.Sc., PhD student

Neurobiology Research Unit

Department of Neurology, Neuroscience Center Copenhagen University Hospital, Rigshospitalet Denmark

Rigshospitalet

UNIVERSITY OF COPENHAGEN FACULTY OF HEALTH AND MEDICAL SCIENCES

- Why do we use animal?
- Introduction to preclinical imaging
- Advantages and disadvantages of using animals

Animals in neuroscience

• Basic research

- \circ Fundamental processes
 - Macroscopic, microscopic, molecular
- o How does the cells, organs, systems work?
- Healthy animals

- Basic research
- Preclinical research
 - $_{\odot}\,$ Disease etiology, pathogenesis and mechanisms
 - $\circ~$ Treatment targets, mode-of-action and efficacy
 - Animal models

Clara Aabye Madsen

Considerations for choosing an animal species:

- 1. Translation
- 2. Ethics and accessibility
- 3. Budget

Neuroimaging in animals

Clara Aabye Madsen

Preclinical imaging

Preclinical imaging MR spectroscopy

2x3x3 mm voxel

Clara Aabye Madsen

Preclinical scanners

Human scanners

Small animal scanners

- o Basic research
- Preclinical research
 - $_{\odot}\,$ Disease etiology, pathogenesis and mechanisms
 - Treatment targets, mode-of-action and efficacy
 - $_{\odot}$ PET imaging: Target engagement, BBB penetration, pharmacokinetics

Clara Aabye Madsen

- Basic research
- Preclinical research
 - $_{\odot}\,$ Disease etiology, pathogenesis and mechanisms
 - Treatment targets, mode-of-action and efficacy

PET imaging: Target engagement, BBB penetration, pharmacokinetics
Ex vivo occupancy

Autoradiography

Clara Aabye Madsen

- Basic research
- Preclinical research
- Develop and validate new methods for imaging in humans
 - PET tracer development

BBB penetration, target binding, pharmacokinetics

Ettrup et al., 2011

Biodistribution and dosimetry

Ettrup et al., 2013

Clara Aabye Madsen

- o Basic research
- Preclinical research
- Develop and validate new methods for imaging in humans
 - PET tracer development

Raval et al., 2022a,b

Clara Aabye Madsen

- o Basic research
- Preclinical research
- Develop and validate new methods for imaging in humans
 - PET tracer development
 - \circ Validation of MR sequences

Clara Aabye Madsen

Clara Aabye Madsen

- Basic research
- Preclinical research
- Develop and validate new methods for imaging in humans
- Validating animal models

- High throughput
- Less animals compared to in vitro/ex vivo
- Genetic manipulation and drug/surgical interventions
- Post-mortem validation
- Less scatter and attenuation
- Higher radiation dose

Disadvantages of preclinical imaging

Anesthesia

\circ Affect brain metabolism and cerebral blood flow

 Table 3
 Cerebral
 blood
 flow
 (CBF)
 in
 conscious
 and

 anesthetized rats, determined using [1251]IMP
 <td

	CBF (mL/100 g/min)
Conscious	94.7±6.0
MMB	63.8±8.1**
KX	62.5±19.1**
Chloral	104.6±12.9
РТВ	49.3±4.9**
PF	52.9±4.4**
IFL	115.6±8.4**

Data are expressed as mean \pm SD (n = 6–7). **P < 0.01 compared with conscious rats as determined using ANOVA with Dunnett's multiple comparison test

Suzuki et al., 2021

Clara Aabye Madsen

Anesthesia

0

Affect pharmacokinetics of PET tracer

Palner et al., 2016

Clara Aabye Madsen

Is anesthesia necessary?

Contrained

Dopfel & Zhang, 2018

Suzuki et al., 2021

Freely moving

Miranda et al., 2019

Clara Aabye Madsen

Dombeck et al., 2007

Kinetic modeling

- $\circ\,$ Large vs small animals
- Input function
 - $_{\odot}$ Arterial vs image-derived
 - \circ Metabolites
- Reference region
- o Is quantification necessary?

Spatial resolution

Human scanner vs small animal scanner
Scanning multiple animals at the same time

Unforeseen complications

- o Anesthesia
 - Rodents: body temperature, overdose
 - Large animals: change in BP, HR, resp., blood glucose etc.
- Tracer production
- Scanner problems

Take-home

- Animals have important roles in translational research and preclinical imaging
- There are several advantages and disadvantages when using animals for imaging
 - Advantages: interventions, dose limit, post-mortem
 - Disadvantages: anesthesia, kinetic modelling, resolution