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PET kinetic course

Basic Mathematics

• Exponential function
• Differential equation
• Integral
• Convolution
• Fitted parameters
• Definitions and abbreviations
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Exponential function
Definition:

The exponential function is normally written as: )exp()( atKtN =

• t – time
• a – exponential constant
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Half-time:

In many cases we want to find the rateconstant a. This can be done e.g. by identifying
the half-time and using the equations as:

2/12/1

2/1

)2/1

6931.0)2/1ln(

)2/1ln(

)exp(2/1

tt
a

at

atKK

−≈=

=

=•

�

�



BasicMathematicsNRU.doc Page 3 21/01/05

Differential equation
Definition:
The simplest differential equation has the form:
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By solving the equation be can find out how the system N(t) behaves. We guess that
the exponential equation is a solution and therefor fill in the equations from the
previous page as:

aB

atBKatKa

=

=
�

)exp()exp(

From this we can see that B=a the exponential equation defined at the previous page
is a solution.
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 - Term “differential” references to the small difference in time (dt)
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Integral (area under the curve)
We have a function f(t). We then define the integral function of f(t) to be F(t). F(t)
fulfills the following:
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Further, we can write the integral of the function f(t) as:
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this is called the area under the curve as will be seen in the example

As an example we can look at the exponential function again. For this function we
have:
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We can show that this is true by differentiating F(t):
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For the exponential function we can then compute the area A under the curve as:
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Using the discrete approximation we can see why it is called area under the curve as
this can be written as:
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This is also called numerical integration and it can be used as an approximation for all
function, also the functions where you don’t know f(t) and therefor need to use an
approximation, as can be seen in this example (upper curve – f(t), lower curve – F(t)):
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Convolution
Convolution we will go through using a simple example. This of course could also
take more complicated forms which could be found in mathematics books.

We take the example from previous pages with a system like:

where we saw the solution could be written as )exp()( atKtN = . From this it is seen
that )0(NK = . The solution for (K = 10, a = -0.5) looks like:
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Exponential function: N(t)=K exp(at)

K = 10

a = -0.5

A more realistic system for our purpose is a system with an inflow C(t) and an
outflow aN(t) as:

The only change from the previous example is that we have a flow into the system
C(t). The rest of the system is then behaving as before. We therefor have the
following differential equation describing the system:

)()(
)(

tCtaN
t
tN +=

∂
∂

The solution to this differential equation is dependent of the form of the inflow C(t).
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To get an understanding of how this system behaves, we are discretizing the example.
For each time step t=0, 1, 2, 3, 4 we have a flow into the system which could be found
as TtC ∆)(  ( T∆  is the length of each time step). This means that for each discrete
time t this amount is equal to N(t). The flow out of the system is described by the
differential equation with the exponential function as the solution, therefor we could
simulate the system as sketched in this figure:
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The upper curve is the discrete input function C(t). The next four curves show the
system response (a discrete exponential function, exp(-0.5t)) to the inflow in each
time interval t=0, 1, 2, … TtCtN ∆= )()( . The lower curve shows the outflow from
the system. This kind of calculation is called a convolution of the input signal (upper
curve) and the response function (the following four curves).

As indicated in the plot the discrete convolution for this simple example can be
written as:
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In the continuos case this can rewritten as:
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The I(t) is the in most cases the unknown input function (it can be measured, but not
described exactly by an equation). Therefor it is for most cases impossible to find the
exact solution for this differential equation and instead numerical integration could be
used for identifying the area under the curve.



BasicMathematicsNRU.doc Page 7 21/01/05

Fitting parameters to an equation

In this case we have a set of measurements that we want to describe by an equation
e.g. a exponential function. We have a set of measurements like shown by the “+”s:

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

M
ea

su
re

N(t)=K*exp(at)+Noise

A good guess will be that the data follows a single exponential function. like:

)ˆexp(ˆ)(ˆ taKtN =

The unknown parameters K and a that should be estimated from the data. We then
have to define a cost-function that tells how well the function described by the
parameters, fits to the measured data N(t). A often used cost-function is the squared
error between measurement and model output, described by the following equation:
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The cost-function has a dependency of both parameters K and a. We don’t know how
the cost-function dependency of the parameters looks like, but it could be like:
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What we are searching for is the minimum for the cost-function, where the model
output follows the measurements best. As the graphs indicate a way to approach that
will be to take a step in the opposite direction of the gradient of the cost-function.
There is though a chance that the parameters will be caught in a local minimum as
indicated in the right graph. First, we have to calculate the 1st order derivative of the
cost-function with regard to the two parameters. These can be calculated as (using the
rule of partial differentiation):
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Using these two equations for calculating the gradient, we then are able to take a
small step in the opposite direction for each parameter. This can be done iteratively so
we calculate the gradients, take a small step, calculate the gradient, take a small step,
and so on. until the cost-function doesn’t decrease anymore. By using this approach
the parameters can then iteratively be estimated:
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For the simple example an iteratively learning scheme for the parameters K and a
could look like:

0 2 4 6 8 10
-0.5

0

0.5

1

Time

M
ea

su
re

N(t)=K*exp(at)+Noise

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

Iteration

C
os

t-
fu

nc
tio

n

Cost=1/T* Σt=0
T  (N(t)-K*exp(a*t))2

0 20 40 60 80 100
0.9

1

1.1

1.2

1.3

1.4

1.5

Iteration

K

0 20 40 60 80 100
-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

Iteration

a

From the curves (upper right) it is seen that the cost-function is minimized iteratively.
The lower two curves shows that the parameters is approached (the continuos lines)
but there is an offset error. This is due to the measurement noise.
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Definitions and Abbreviations

One tissue compartmental model (sometimes called two compartment
model)

Definition:

In a one tissue compartment model there is one compartment with free ligand like
sketched here:

Where Ca(t) is the concentration of tracer in blood , Cf(t) is the concentration of free
(unbound) tracer in brain tissue, and K1 and k2 are the two rateconstants for the
system. The differential equation for this system could be written as:
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and the simple solution for this is:
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In a scanner what is measured is Ci(t) a combination of Cf(t) and Ca(t). This is
normally written as:

)()1()()( tCVtCVtC fbabi −+=

where Vb is the blood volume part of each brain measurement.

Two tissue compartmental model (sometimes called three compartment
model)

Definition:

This is the extension to the one tissue compartment model with an extra bound tissue
compartment. This can be sketched as:

Cf(t)

Ca(t)

K1

k2



BasicMathematicsNRU.doc Page 10 21/01/05

where Ca(t), Cf(t), K1 and k2 are defined as before. Cb(t) is then the concentration of
the bound tracer in brain tissue, and k3 and k4 are the two rateconstants for the binding
system. The differential equation for this system could be written as:
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A general solution for these equations is not simple to find. If we could simplify the
equations a bit by assuming that k4 is zero, as is the case for e.g. the tracer FDG we
can find a simple solution:
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In a scanner what is measured is Ci(t) a combination of Cf(t), Cb(t), and Cat). This is
normally written as:

))()()(1()()( tCbtCVtCVtC fbabi +−+=

where Vb is the blood volume part.

Abbreviations

Extraction:
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= , where Ca(t) is concentration in incoming substance

and Cv(t) is concentration in outgoing substance.
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