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Summary (English)

The serotonin (5-HT) system plays a central role in the regulation of brain function and its disruption

and/or imbalance has been linked to many brain disorders. Although the 5-HT system has been exten-

sively studied in animal models and post-mortem tissue, many facets of the 5-HT system in the in vivo

human brain remain to be fully characterized. In the work presented in this thesis we sought to inves-

tigate the functional connectivity and the spatial structure of the 5-HT system by taking advantage of

the unique high resolution PET, MRI and fMRI data available in the Cimbi database.

The raphe nuclei form the seat of the serotonergic projections throughout the mammalian brain.

Hence, they are an ideal proxy for identifying brain function linked to the 5-HT system. We inves-

tigated the functional connectivity of the 5-HT system by finding which brain regions were synchro-

nized with the activity of the raphe nuclei in the human brain at rest, as measured with resting-state

functional MRI. In order to asses if the strength of the synchronization is related to a feature of the

5-HT system, we subsequently investigated the extent to which it was associated with corresponding

serotonin transporter density.

A detailed in vivo mapping of the 5-HT system in the human brain offers the opportunity to inves-

tigate the spatial characterization of the 5-HT system. Taking advantage of the high resolution PET

images of the Cimbi database and the availability of corresponding structural MRI, we created an in

vivo 5-HT atlas of the human brain receptors 5-HT1AR, 5-HT1BR, 5-HT2AR and 5-HT4R and the trans-

porter, 5-HTT. We validated this 5-HT atlas by comparing it to measurements from autoradiography

studies, which in turn also allowed us to convert the PET measures into densities. The spatial associa-

tion between density and levels of genetic information was subsequently investigated using data from

the Allen Human Brain Atlas.

Brain parcellations derived from features such as cytoarchitectonic boundaries or functional activa-

tion may not represent a correct representation of the underlying distribution of the 5-HT receptors and

transporter. Hence, creating a new parcellation specific to the 5-HT receptors and the transporter can

provide a model more relevant to the 5-HT system than existing ones. Changes in the dynamic profile

of PET data reflect changes in receptor density and may contain important characteristics to segregate

brain regions based on variation of the receptor distribution profile. We derived and implemented two

probabilistic parallel factor analysis models to identify, from the dynamic PET data, brain regions with

distinct dynamic properties. These models take advantage of common modes in the data (e.g. space

and time) to identify latent components summarizing the data across another mode (e.g. subjects).
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The models were validated through simulation, applied to the dynamic PET data and additionally to

an fMRI dataset to test its applicability to other modalities.
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Summary (Danish)

Serotonin (5-HT) systemet spiller en central rolle i modulering af hjernens funktion, og der ses forstyrrelser

i 5-HT systemet ved en række forskellige neuropsykiatriske sygdomme. 5-HT-systemet er grundigt

beskrevet i dyr og også delvis i menneskehjerner udtaget efter døden, men der er stadig betydelige

mangler i forståelsen af 5-HT-systemets funktion hos det levende menneske. Denne afhandling beskriver

resultaterne af studier af den 5-HT drevne funktionelle forbindelse mellem hjerneregioner samt en ko-

rtlægning af nogle af 5-HT-systemets receptorer og transporter. Arbejdet bygger på unikke PET, MRI-

og fMRI-data, der er tilgængelige i Cimbi-databasen.

I pattedyrshjernen er det raphe-kernerne, hvor 5-HT dannes og dermed danner sæde for de seroton-

erge projektioner og dermed udgør de et udgangspunkt for undersøgelserne af hjerneprojektioner af

relevans for 5-HT systemet. Ved at undersøge den funktionelle aktivitet fra raphe-kernerne kunne iden-

tificere, hvilke hjerneområder der er synkroniseret med kernerne, målt ved funktionel MR i vågentilstand

mens hjernen ikke foretager sig noget bestemt. For at vurdere, om styrken af synkroniseringen er re-

lateret til et træk af 5-HT-systemet, undersøgte vi senere, i hvilket omfang det var forbundet med

tilsvarende tæthed af 5-HT transporteren.

En detaljeret in vivo kortlægning af 5-HT-systemet i den menneskelige hjerne giver mulighed for at

undersøge den strukturelle karakterisering af 5-HT-systemet. Ved at udnytte PET-billederne med høj

opløsning fra Cimbi-databasen og de tilhørende strukturelle MRI skanninger har vi genereret en 5-HT-

atlas af de humane hjerne-receptorer 5-HT1AR, 5-HT1BR, 5-HT2AR og 5-HT4R og 5-HT transporteren.

Vi validerede denne 5-HT-atlas ved at sammenligne den med målinger fra autoradiografi studier, som

tillod en kalibrering af PET-målene til koncentrationer. Den strukturelle tilknytning mellem tæthed og

niveauer af genetisk information blev efterfølgende undersøgt ved anvendelse af data fra Allen Human

Brain Atlas. Opdeling af hjernen i funktionelle enheder (parcellering) foretages som regel vhja. f.eks.

cytoarkitektoniske grænser eller funktionel aktivering. Men her anvendte vi det ovenfor beskrevne

5-HT atlas til at at skabe en ny parcellation, specifik for 5-HT-systemet. Ændringer i den dynamiske

profil af PET-data afspejler ændringer i receptortætheden og kan indeholde vigtige egenskaber til at ad-

skille hjerneområder baseret på variation af receptorfordelingsprofilen. På baggrund af de dynamiske

PET-data afledte og implementerede vi to probabilistiske parallel faktoranalysemodeller til at identifi-

cere, hjerneområder med distinkt dynamiske egenskaber. Disse modeller udnytter komponenter i data

(fx struktur og tid) for at identificere latente komponenter, der opsummerer data i en anden tilstand (fx

individer). Modellerne blev valideret gennem simulering og blev efterfølgende anvendt på dynamiske
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PET data og fMRI datasæt for at teste dets anvendelighed til andre modaliteter.
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Introduction

The serotonin (5-hydroxytryptamine, 5-HT) system is one of the most complex neurotransmitter sys-

tems in the mammalian brain. It is involved in a wide range of brain functions and is a key compo-

nent to the understanding of brain regulation and associated disorders. To date, molecular imaging

techniques (e.g. positron emission tomography (PET)) are the only available tool for the study of

neuroreceptors in the living human brain. To understand the 5-HT system it is essential to obtain a

precise description of its functions and structure, however the 5-HT system is yet to be fully character-

ized. The work presented here sought to highlight the functional and structural properties of the 5-HT

system.

Although 5-HT is widely involved in brain function, only the raphe nuclei can be characterized as

having a primary serotonergic role. The raphe nuclei are the seat of serotonergic innervation through-

out the cortex and are the source of synthesis for cerebral 5-HT. As such, they form an unique proxy for

the study of brain activation related to the 5-HT system. The innervation of the raphe nuclei has been

thoroughly studied in rodents [1, 2]. However, it was previously unclear how neuronal modulation of

these nuclei are related to the function of afferent and efferent brain regions. Hence, understanding the

functional connectivity (FC) of the raphe nuclei is a first step in mapping serotonergic brain function.

Unfortunately, the raphe nuclei are a relatively small structure, made of an heterogeneous amalgam of

cells, including white matter cells, and is impossible to delineate precisely and difficult to study using

standard techniques such as magnetic resonance imaging (MRI). For this reason, all previous attempts

to quantify the functional properties of the raphe nuclei with functional MRI (fMRI) have been using

manually drawn regions of interest (ROI) [3, 4, 5] which may have been inaccurate.

The structure of the 5-HT system is characterized by the distribution of its receptors and trans-

porter. Previously, the distribution of the 5-HT receptors had been quantified through autoradiography

[6, 7] or with PET images of relatively low resolution [8]. These studies formed the foundation of

our knowledge about the distribution of 5-HT receptors throughout the human brain. However, their

applicability to further comparative studies in neuroimaging is limited and difficult. Autoradiography

is usually reported as a table without precise spatial correspondence other than region names and the

previous 5-HT atlas was of relatively low resolution and lacked corresponding MRI, hence limiting

its spatial precision [8]. The Cimbi database [9] contains high resolution PET targeting the 5-HT1AR,

5HT1BR, 5-HT2AR and 5-HT4R receptors and the transporter, 5-HTT, together with corresponding

structural MRI images. Hence, this data offered a unique opportunity to created a high resolution in
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vivo atlas for some of the 5-HT receptors and the transporter in the human brain.

Neuroscientists have repeatedly tried to divide the human brain into regions of homogeneous prop-

erties in an effort to establish a simpler, discrete description of the brain’s function and structure. An

early parcellation, the well-know Broadmann areas, divided the brain according to its cytoarchitec-

tonic features [10]. In more recent work, based on neuroimaging studies, the human brain has been

parcellated using features such as gyrification [11], intrinsic brain activation [12] and even multi modal

approaches [13]. However, these parcellations of the brain may not reflect the specific organization

(i.e. receptor distribution) of the 5-HT system. Summary measures proportional to receptor density

(e.g. binding potential) can potentially be used to identify distinct brains regions. Summarizing the

dynamic PET data may however mask pertinent information that would allow to segregate regions of

the brain which would otherwise be considered together as a uniform region. For example, regions

with the same binding potential may in truth have different dynamics and should be considered as dis-

tinct. Unfortunately, there is considerable noise in dynamic PET data and models accounting for the

noise while keeping optimal spatial resolution are necessary to obtain detailed parcellation of the brain.

The Parallel Factor Analysis (PARAFAC) is a model similar to principal component analysis (PCA),

but which leverages common modes (e.g. time and space) across multiple datasets (e.g. subjects) to

identify vectors maximally explaining variance in the data. In a probabilistic framework, priors can be

used in these model to impose sparsity in their solution and potentially identify solution which may be

more biologically relevant.

Thus, in the context of the issues exposed here, the primary aims of this thesis were to:

1. Investigate the functional connectivity of the dorsal and median raphe nuclei (Study I).

2. Create a high resolution atlas of the 5-HT system using PET and MRI data from the Cimbi

database (Study II)

3. Derive, implement and validate probabilistic PARAFAC algorithms and investigate their appli-

cability to extract features from dynamic PET of 5-HT targets and model fMRI data. (Study

III)
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Background

Serotonin System

The 5-HT molecule (Figure 1) is a monoamine neurotransmitter derived from tryptophan. Synthesis of

cerebral 5-HT occurs within a group of nuclei located on the midline of the brainstem, the raphe nuclei.

Of those, the dorsal (DR) and median (MR) raphe nuclei are the source of the serotonergic innervation

of the mammalian cortex [14]. The structure and physiological properties of the raphe nuclei have

been extensively described in rodents [15, 16, 2]. In humans, about 70% and 43% of the neurons in

the DR [17] and MR [18] are serotonergic, respectively. Indeed, a number of other neurotransmitters,

such as dopamine and glutamate, have been identified in these nuclei [19].

The afferent and efferent projections of the DR and MR have been thoroughly studied in the rat

and macaque monkeys. It has been shown that efferent projections of both the DR and MR are widely

distributed throughout the forebrain to distinct, non-overlapping brain areas [20, 21]; these projections

are exemplified in Figure 2. Conversely, the afferent inputs to the DR and MR have been shown to

originate largely from the same source regions, such as medial prefrontal cortex and limbic areas [2].

However, denser inputs from hypothalamic structures to DR compared to MR have been observed.

Dense monosynaptic bidirectional projections between DR and MR also exist [1]. The extent to which

these observations in rodents translate into humans remains to be fully determined.

Figure 1: The serotonin molecule
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Figure 2: Projections of the raphe nuclei

Figure 3. Synaptic localization of the 5-HT targets studied in this thesis. This

figure was kindly provided by Patrick M. Fisher and was originally adapted

from [22].

Characteristics of the 5-HT system which contribute to its versatility and complexity are the large

range of associated receptors, the extent of serotonergic projections and the diversity of other neuro-

transmitters involved in this system. 5-HT receptors are G protein-coupled receptors influencing cell

firing (both increase and decrease) by modulating the levels of the second messengers cyclic adenosine
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monophosphate (cAMP), inositol triphosphate (IP3) and diacylglycerol (DAG), with the exception of

5HT3 which is a ligand-gated ion channel. Based on their neurochemical properties, the 5-HT re-

ceptors have been classified into 7 families (5-HT1 to 5-HT7) and 14 receptor subtypes. This thesis

focuses on the four receptor subtypes 5-HT1AR, 5-HT1BR, 5-HT2AR and 5-HT4R and the transporter

5-HTT. These receptors and transporter are currently the only 5-HT targets that can be imaged in vivo

and for which there exist corresponding radioligands with a high affinity exclusive to the subtype of

interest [23]. The synaptic localization of these receptors and the transporter are illustrated in Figure 3.

In terms of basic physiological mechanisms, the 5-HT1AR and 5-HT1BR both decrease cAMP levels of

neurons (inhibition) where as the 5-HT2AR increases levels of IP3 and DAG (excitation) and 5-HT4R

increases cAMP levels (excitation). The 5-HTT recycles serotonin from the synaptic cleft back into

the neuron.

All 5-HT receptors have unique spatial distributions throughout the brain and each is related to a

large number of brain functions and disorders. Here a few key aspects are presented.

5-HT1AR

The 5-HT1AR has a high density in the raphe nuclei where it acts largely as an autoreceptor inhibiting

the release of 5-HT. High densities of postsynaptic 5-HT1AR can also be found in the hippocampus and

amygdala. This receptor is involved in a large range of functions and diseases, from complex disorders

such as anxiety [24] and addiction [25] to basic physiological functions such as thermoregulation [26]

and vasoconstriction [27].

5-HT1BR

The 5-HT1BR can also be found as an autoreceptor in the raphe nuclei, although in relatively lower

levels than the 5-HT1AR and 5-HTT. More generally, the 5-HT1BR is both an autoreceptor and het-

eroreceptor with high densities in occipital and frontal cortex and striatum. The 5-HT1BR has been

implicated in a range of functions and disorders, such as aggression [28], anxiety and depression [29].

5-HT2AR

The 5-HT2AR is an heteroreceptor which is widely expressed throughout neocortex, with higher den-

sities in the prefrontal and temporal cortex. It is the primary target for hallucinogenic drugs such as

psilocybin or LSD and a recent study suggests that these drugs could potentially be used for resolving
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treatment-resistant depression [30]. 5HT2AR has also been shown to influence brain functions such as

sleep [31], sexual behavior [32] and threat processing [33, 34].

5-HT4R

Contrary to the receptors described above, the 5-HT4R has a low density in neocortex, but a high

density in the caudate and putamen. A study suggests that the level of 5-HT4R forms a good proxy

for the serotonin levels in the brain [35]. This receptor has also been implicated in functions such as

appetite [36] and treatment of psychiatric disorders such as depression [37].

5-HTT

Similarly to the 5-HT4R, the 5-HTT has a low density in neocortex and a high density in the caudate

and putamen and additionally in the raphe nuclei, midbrain and thalamus. The 5-HTT is the principal

target for selective serotonin reuptake inhibitors (SSRIs) used in the treatment of depression. Inter-

estingly, the 5-HT1BR has been shown to be involved in the regulation of the the activity of 5-HTT

[38]. The 5-HTTLPR, a polymorphism in the promoter region of the 5-HTT gene (SLC6A4), has been

shown to influence aspects of brain function [39, 40].

Positron Emission Tomography

Positron emission tomography (PET) is an imaging technique which relies on the localization of ra-

dioactive decay of an administered radiolabeled compound. As such, PET and the related technique

Single Photon Emission Computed Tomography (SPECT) are currently the only imaging techniques

allowing the study of neurotransmitter systems in vivo in the human brain. A number of radioligands

have been developed to image 5-HT receptors with PET [23].

When performing a PET experiment, a molecule with high specificity for a given target (e.g. a

specific receptor subtype) is labeled with a radioactive isotope (e.g. 11C or 18F); this molecule is then

called a radioligand. This radioligand is injected into the subject, where it distributes throughout the

body, while the unstable isotope decays at a fixed rate (e.g., 11C and 18F have half-lives of approxi-

mately 20 and 110 min, respectively) and releases a positron. When this positron gets in contact with

an electron (a process which occurs typically within 1mm of the site of decay), the positron and elec-

tron are both annihilated and two photons are emitted at 180° from one another at a specific energy

level (511 keV). A PET scanner is formed by a ring of detectors around the subject which can detect
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photons at that energy level. By detecting the coincidence of two photons and using their position on

the detection ring and the relative delay between their detection it is then possible to determine the

origin of the annihilation site. When this process is performed over a period of time, the decaying

positions can be located, counted and stored within a structure called a sinogram. The sinogram data

can be modeled to form quantitative spatial approximation of the origin of the decay in space and

create the 3D PET images, a complex process termed reconstruction. As the labeled molecule will

distribute spatially according to its interaction in tissue (e.g. binding to a receptor, usage by a cell),

the PET image will be representative of the underlying process affecting the molecule. In the case of

5-HT PET imaging we are interested in the binding of the radioligand with the target receptor subtype.

The quantitative measurement of radioligand binding is expressed as binding potential (BP), a

measure of the PET signal of interest relative to the non specific, or non displaceable signal. When

the distribution of the radioligand can be assumed to be in stable, steady-state, a simple ratio of the

signal within a target region and a reference region (e.g. blood or reference region devoid of receptor)

can be used to quantify the PET images. However, in practice steady-state is often not achievable

and dynamic PET images (i.e. multiple PET images over time) and more sophisticated quantification

methods are required. A common strategy is to establish a model which considers the PET signal as

being formed by separate compartments. These compartment models try to estimate the concentration

of a given radioligand within each compartment as well as the rate constants (i.e. the speed at which

the radioligand is exchanged from one compartment to another) governing the dynamics between the

compartments. One of the most common models is the two-compartment model which compares a non

displaceable compartment, containing uninteresting background signal, and a specific compartment,

containing the signal of interest. The non displaceable signal is often obtained from the plasma con-

centration of blood samples and is seen as the gold standard reference. However, blood samples often

need to be taken from arterial blood, something which is inconvenient to implement and cumbersome

to the participant. In the cases where a brain region devoid of the target exists, it is also possible to use

the signal from that region as a reference, rather than using the signal from plasma. The selection of an

appropriate reference region is critical and in some cases might be ambiguous [41]. For all the kinetic

modeling performed in this thesis, we have used a two compartments model with a reference region

named MRTM2 [42]. This model first identifies the output rate constant of the reference region, k2,

using another form of the model called MRTM0; this model uses the signal from the reference region

and signal from a region with high binding to obtain the best estimate of k2. The rate constants in
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other regions with lower binding (and usually containing more noise) are similarly estimated, but the

constant k2 estimated from the high-binding regions is reused, hence avoiding its estimation with a

more noisy signal. The estimation of the rate constants is performed with a multilinear regression and

was shown to be more robust to noise compared to similar models [42].

Magnetic Resonance Imaging

Principles and Acquisition

Magnetic resonance imaging (MRI) is an imaging technique that measures the collective signal gener-

ated by the magnetic moment of molecules to study structural and functional characteristics of tissues.

A spin is a quantum property of subatomic particles which defines an angular momentum along an

axis. For particles such as protons, this spin can have two states, up or down, which also correspond

to high or low energy levels. In an atom with an even number of particles in the nucleus (e.g. 12C), the

spins are at equilibrium, but when the number of particles is uneven (e.g. 1H) the atom has a non-null

net spin and a corresponding magnetic moment.

In a natural environment, the high and low energy spins of protons freely moving within tissue are

at equilibrium, hence there is no net magnetic moment. However, when placed in a strong magnetic

field, a fraction of the low energy spins align with the magnetic field resulting in a net polarization

vector parallel to the axis of the magnetic field. The application of a radio frequency (RF) pulse at

the resonant (Larmor) frequency increases the angular momentum of the spin of protons and changes

the angle of the net polarization vector. The protons will then be rotating at an angle with the axis

of the strong magnetic field and the speed at which they rotate will be proportional to the strength

of the magnetic field. Typically, a pulse tipping the net polarization vector by 90° or 180° is used.

After receiving a pulse, the net polarization vector will relax back to its original configuration over a

period of time. The time taken by the longitudinal (parallel to the main magnetic field) and transverse

(perpendicular to the main magnetic field) parts of the net polarization vector to revert back to the

original configuration (relaxation) follows an exponential process, and the time constant governing

these processes are referred to as T1 and T2, respectively. These relaxation constants are influenced

by the nature of the tissue in which the protons are located; typically, the less dense the tissue is,

the faster the net polarization vector can revert back to its original state and the larger the relaxation

constant will be.

After the application of a RF pulse, the transverse part of the net polarization vector generates
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an alternating magnetic field which can induce a current in receiver coils. The quantification of the

current induced in the receiver coils forms the signal acquired by an MRI scanner, hence all MRI

sequences rely on strategies to transform parts of the net polarization vector onto the transverse axis.

For example, in T1-weighted sequence first a 90° RF pulse is applied, and then after some waiting time

(repetition time), another pulse is applied to transfer the longitudinal component onto the transverse

axis where it can be quantified. As the precession speed of a proton is linearly related to the strength

of the magnetic field in which it is placed, it is possible to target a specific spatial location with a RF

pulse by applying a magnetic gradient varying linearly in space, a process called slice selection. Linear

gradients along the remaining axis can be used to encode phase information within the slice, by turning

a gradient on and off after the application of the RF pulse, and to encode frequency information by

applying a gradient along the remaining axis during the acquisition of the MR signal. Frequency and

phase information form the axes of k-space and, using methods such as inverse Fourier transformation,

can be used to create images of the 2D slices from which a full 3D volume can be reconstructed.

MRI sequences quantifying T1 and T2 relaxation are nowadays used to acquire high resolution

structural images where there is contrast between tissue types due to their different composition (hence

different associated relaxation constant). It is also possible to capture neuronal activity with MRI, a

technique known as fMRI, by imaging the blood-oxygen-level-dependent signal (BOLD) over time.

Neuronal activity consumes energy and to meet that energy demand a process termed hæmodynamic

response triggers a local dilation of blood vessel which results in a greater flow of oxygenated blood

to the neurons. Red blood cells carrying oxygen, hemoglobin, are diamagnetic molecule. When they

lose their oxygen, they become deoxyhemoglobin, a paramagnetic molecule which affects the local

magnetic susceptibility in its surroundings and induces a loss in MR signal due to inhomogeneity in

the magnetic field. Hence, an increase in oxygenated blood flow increases the ratio of hemoglobin

to deoxyhemoglobin and results in an increase in MR signal. Thus, BOLD is used as an indirect

measure to asses activation of a given brain area. As the T2 signal is highly influenced by magnetic

field inhomogeneity, sequences sensitive to changes in T2*, the observed transverse relaxation signal

of the T2 signal, are used to acquire BOLD fMRI images.

Resting-State Functional MRI

Functional MRI has been extensively used to study the brain response to active or passive tasks, hence

probing the functional properties of the human brain. However, a specific application of fMRI which
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has gained tremendous interest in the last decade is the study of the brain at rest, while not engaged in

a task. Following the initial observation by [43] and the later formalization by [44, 45, 46] that some

brain regions were synchronized when a subject was not engaged in a task and desynchronized when

engaged led to the concept of a “default” network in the brain, termed the “default mode network”.

Subsequent studies of brain activity at rest with fMRI, a technique called resting-state fMRI (rs-fMRI),

revealed a number of intrinsic, resting-state networks (RSN) believed to represent various aspects of

the brain’s functional organization [47].

An important aspect of rs-fMRI research concerns its methodology. A number of issues have been

addressed since its inception; issues such as global signal regression [48], motion [49] and physio-

logical artifacts [50] and significance testing [51] have been subjects of controversies in the field and

required adjustments in the preprocessing and analysis procedures. Although there is now some con-

sensus in the neuroimaging community on these issues, many different approaches are used to prepro-

cess and analyze rs-fMRI data. Issues such as the number of existing RSNs or the low reproducibility

at the subject-level still remain to be resolved.

Even though there are limitations to this technique, there are also viable analysis strategies that

can be employed so that it can be a useful proxy for communication between brain areas. Practically,

rs-fMRI research focuses on identifying changes in RSNs related to differences in brain state. By

defining the connectivity between two regions as the amount of temporal correlation between their

rs-fMRI signal, researchers have sought to identify changes in FC resulting from conditions such as

neurological disorders or diseases.

FreeSurfer

FreeSurfer (FS, https://surfer.nmr.mgh.harvard.edu/)[52, 53, 54] is a state-of-the-art set of software

tools for the analysis of neuroimaging data. It was initially developed to analyze morphometric prop-

erties of the human brain, such as cortical thickness and curvature, but was later extended to perform

surface-based analysis of data such as fMRI, and more recently PET [55].

To obtain a model of the cortical surface of an individual, FS requires one or multiple T1-weighted

MRI images. If multiple T1 images are provided, they are aligned and averaged to create an image

with better signal-to-noise. FS then performs normalization of image intensities by correcting for the

B1 field inhomogeneity and removes non brain tissue using a deformable model (skull stripping) [56].

Then, white matter (WM) voxels are identified and a surface of the pial/WM boundary is created for
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each hemisphere; this is referred to as the WM surfaces. From these WM surfaces, pial surfaces are

created by inflating the WM surfaces outward until the edge between gray matter and cerebrospinal

fluid.

One of the main advantages of surface-based analysis over standard volume-based approaches is

the ability to perform surface smoothing. Smoothing is a central preprocessing step in neuroimaging

and it is especially critical in PET to limit the noise contribution in the kinetic modeling. However,

the already large partial voluming effects intrinsic to PET images argue for limiting the amount of

smoothing used in the images. By restricting smoothing to signal sampled from between the WM/pial

surfaces, surface smoothing prevents the blurring of signal across tissue types and possibly gyri and

hence prevents the introduction of additional partial voluming in the signal of interest.

To perform surface-based analysis, individual surfaces can be transformed to an average surface

to perform group analysis. The transformation between the surfaces is a nonlinear mapping which

matches curvature across surfaces while minimizing distortion of the original distance between ver-

tices. In FS, the default normal surface is named fsaverage and consists of approximately 160,000

vertices for each hemisphere. Lower resolution versions of this normal surface, such as fsaverage5

which has around 10,000 vertices, also exist. Moreover, when there is different contrast in GM and

WM in a given modality, as is the case with all 5HT PET images, it is possible to use the WM sur-

face model to perform accurate and robust registration between images from that modality and the

structural image processed by FS by using boundary-based registration (BBR) [57]; BBR tries to align

an image with the WM boundary such that the difference in intensity on each side of the surface is

maximized over the whole WM surface.

FreeSurfer additionally performs labeling of subcortical structures in the volume [58, 59] and par-

cellation of the cortical surface into regions defined by the Desikan-Killiany atlas [11] presented in

Figure 4. Recently, tools for the refinement of the brainstem segmentation [60] and hippocampus

subfields [61] have been introduced in FS.
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Figure 4. The Desikan-Killiany atlas (left hemisphere) on the inflated (top)

and pial (middle and bottom) fsaverage surfaces. Upper and middle: left

are lateral views and right are a medial views. Lower: left is a view from

the top and right a view form the bottom. The figure was obtained from

https://www.frontiersin.org/articles/10.3389/fnins.2012.00171/full, [62].

Messenger Ribonucleic Acid

Messenger ribonucleic acid (mRNA) is the copy of a specific gene from the DNA specifying a se-

quence of amino acids necessary for the construction of a protein. The mRNA genetic information is

structured as a chain of codons, a sequence of three base pairs, where each codon encodes for a spe-

cific amino acid, except for the start and end codons which specify the initiation and termination of the

protein synthesis. The translation of the mRNA, the process of synthesizing a protein, occurs within

the ribosome in the cytoplasm or on the endoplasmic reticulum and requires additional transfer and

ribosomal RNA. Although the translation of mRNA occurs mostly in the cell body, local translation

in the dendrites and the axon of neurons are emerging as important regulatory mechanism of synaptic

activity and neuronal functions [63, 64]. In this work, mRNA information on the 5-HT targets was
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obtained from the Allen Human Brain Atlas, a high throughput effort which used in situ hybridization

to quantify the mRNA levels of 62,000 genes across all brain structures. For the 5-HT system, the

gene encoding the 5-HT1AR, 5-HT1BR, 5-HT2AR, 5-HT4R and 5-HTT are labeled HTR1A, HTR1B,

HTR2A, HTR4 and SLC6A4, respectively.

Linear Data Decomposition

Linear decomposition methods, also known as matrix factorization, are methods which attempt to

identify latent features which can be linearly combined to explain the data. Methods such as singular

value decomposition , independent component analysis, PARAFAC or dictionary learning are all ma-

trix factorization algorithms which are optimizing different objective functions. In general terms, for

a given data matrix Y ∈ Rn×p, where n is the number of samples (e.g. voxels) and p the dimension

of the data (e.g. subjects) linear decomposition methods seek to identify a matrix of k latent vectors

X ∈ Rn×k which can be linearly composed such that

Y = βX +E (1)

where E is an error term to be minimized. Factorization methods differ from each other by imposing

different constraints for solving this problem. Given a data matrix Y where the column mean has been

removed, PCA seeks to optimize the objective function

argmin
X

(‖Y − βX‖2F ), withXTX = I (2)

In other words, PCA seeks to identify a set of orthogonal vectors such that the squared error (here

equivalent to the variance) is minimized. The related ICA algorithms similarly aim to identify latent

vectors minimizing the squared error while optimizing for maximum independence (often measured

as mutual information or non-gaussianity) between the vectors.

When two or more dimensions (or modes) are common across multiple datasets (e.g. fMRI data

normalized in space with a fixed task design), it is possible to exploit this structure in the factorization.

Such a dataset is illustrated in Figure 5. The Parallel Factor Analysis (PARAFAC) model, also known

as tensor rank decomposition, works similarly to PCA, but identifies common latent vectors across

multiple datasets. Given a set of data Y = {Ys}, the 3-way PARAFAC model (two common modes)

seeks to identifyX and βs which optimizes

argmin
X

(∑
Ys∈Y

||Ys − βsX||2F

)
(3)
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Figure 5: An example 3-way dataset where two modes (i.e. time and space) are repeated across the

remaining dimension (i.e. subjects). Samples are represented by circles of varying magnitude and

color.

Solving this problem can be done in many ways and in this thesis we considered the well-established

variational inference framework. Variational inference performs a simplification of the fully Bayesian

formulation of the problem which would otherwise be intractable. The Bayesian formulation allows

for the use of priors to automatically infer the dimensionality (i.e. number of relevant components) of

the problem. The traditional Variational Bayes (VB) formulation of PCA uses an automatic relevance

determination (ARD) prior which tries to shrink to zero whole columns of the matrix X . Other types

of priors, such as Jeffrey’s prior, are sparse (SP) priors which try to shrink individual elements of X .

In this work we have implemented the Variational Bayes formulation of PCA and PARAFAC with

ARD priors, VB-PCA and VB-PARAFAC, and their sparse equivalent with Jeffrey’s prior, SP-PCA

and SP-PARAFAC.
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Methods

All data used in this thesis was provided by the Cimbi database [9], with the exception of the fMRI

data used in study III, which was part of a pilot study and kindly provided by Dr. Per Jensen. For all

dynamic PET images, one or two corresponding T1-weighted MRI and, in most cases, a T2-weighted

MRI were acquired.

FreeSurfer Processing

All T1-weighted MRI in study I & II were processed using FS’s cortical reconstruction process, the

so-called recon-all, producing subject-specific surfaces, cortical and subcortical labeling, including

white matter, and transformation to the standard space in the volume (MNI305) and on the surface

(fsaverage). First, all images were assessed to contain no large artifacts or anatomical abnormalities.

If available, a T2-weighted structural MRI was used to improve the delineation of the pial surface by

FS. In study I, no manual edits were performed and volume-based data was normalized to MNI305

space. In study II, manual edits to correct surface errors were carefully performed by two experts

and volume data was normalized to MNI152 space using the combined surface and volume (CVS)

registration [65]; this process is not ran by default by recon-all.

Dynamic PET Processing

All the dynamic PET images used in this thesis were acquired on a high resolution Siemens HRRT

scanner, with an approximate in-plane resolution of 2mm [66] in the center of the field of view. Re-

construction of the PET data was performed using the 3D–OSEM–PSF algorithm with TXTV based

attenuation correction [67, 68, 69]. Frames of the dynamic PET data were corrected for motion using

AIR 5.2.5 [70]. In study I & II, the dynamic PET data, were then aligned with the structural MRI and

subcortical regions were transformed to MNI305 or MNI152 and cortical regions were sampled onto

individual subject’s FS surface and transformed to the standard cortical surface fsaverage. Finally

the dynamic data was smoothed correspondingly on the surface with a full width at half maximum

(FWHM) Gaussian filter of 10 mm and in the volume with a FWHM Gaussian filter of 6 (Study I) or 5

(Study II) mm. Regional and vertex/voxel-wise kinetic modeling of the dynamic data was performed

using the MRTM2 model to obtain non-displaceable binding potential (BPND) measures [42].
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Study I

The central analysis performed in this study consisted of extracting DR and MR signal from the rs-

fMRI and find which brain regions are associated with these signals. Data previously acquired by [71]

was used. Initially, 63 subjects for which [11C]DASB PET images, T1-weighted MRI and rs-fMRI

images at baseline and rescan were available were considered in the analysis. FreeSurfer was used to

preprocess the anatomical and functional data. The rs-fMRI data was preprocessed and vertex/voxel-

wise FC was assessed using a general linear model (GLM). Subsequently, to investigate the association

between the extent of FC between a region of the brain with the raphe nuclei and the corresponding

density of 5-HTT, we performed a linear regression between FC measures and BP for each subject and

evaluated whether the regression slopes were significantly different from 0. The 5-HTT BPND were

obtained as described above.

Preprocessing and analysis of functional MRI

The raphe nuclei are small structures embedded close to prominent sources of noise. Hence, in this

study special care was given to the correct alignment of the fMRI data with the anatomy and the

removal of physiological artifacts and other sources of noise. A standard preprocessing workflow was

applied to prepare the subcortical data in the volume and the cortical data on the surface: the images

were motion corrected, aligned with the structural image, projected to standard space and smoothed on

the surface and in the volume with a FWHM Gaussian filter of 10 and 6 mm, respectively. However,

some preprocessing steps not commonly considered in rs-fMRI were also applied. A correction for

inhomogeneity in the B0 field [72] was applied to the structural image used with the fMRI to improve

its alignment with the functional data. Furthermore, physiological and other sources of noise were

removed in two steps. First, PESTICA v2 [73] was applied to identify and remove contributions

from cardiological and respiratory signals. Secondly, principal sources of variation from signal in

white matter and cerebrospinal fluid, and additionally signal from the 4th ventricle were included as

nuisance regressor in the first-level analysis GLM. Within the model, frames flagged as containing

too much motion were censored and subjects where 10% or more of the total number of frames were

flagged were removed from the analysis. In total, 14 subjects were excluded.

The association between DR and MR signal was evaluated for every vertex/voxel at the subject-

level using GLMs. Then, a group-level analysis was performed by evaluating at every vertex/voxel,

using a two-tailed t-test, if the mean of the regression coefficients obtained from the subject-level
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GLMs at that location was different from 0. Correction for multiple comparison (vertex/voxel thresh-

old of p = 0.001 and cluster threshold of p = 0.05) was performed and the final clusters significantly

related to DR and MR were identified.

Delineation of the Dorsal and Median Raphe Nuclei

Delineating the raphe nuclei can be challenging [74] as they are not visible on structural MRI due

to their heterogeneous composition. Here we adopted a multimodal strategy to delineate these nuclei,

leveraging the high density of 5-HTT within the nuclei. Mean time-weighted images of the [11C]DASB

PET images were created and T1-weighted MRI were used to define anatomical landmarks of the cere-

bral aqueduct, 4th ventricle and brainstem on these images. Then, the voxel with maximum intensity

within the region formed by the landmarks was identified and defined as the center of the ROI defining

DR; neighboring voxels with highest intensity and within the boundaries of the anatomical landmarks

were then incrementally added one at a time, hence growing the ROI, until a predetermined target

volume of 115 mm3 was reached. Then, the same strategy was adopted to delineate the MR, while

using the DR as an upper anatomical boundary and a target volume of 64 mm3. Figure 6 outlines the

delineation outcome.

Figure 6: Delineation of the DR and MR on T1-weighted MRI using a [11C]DASB image.
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Study II

The main methodological challenge in this study was to validate the new processing pipeline for PET

data within FS. This study included all PET data from healthy participants of the Cimbi database

aged between 18 and 45 years, a total of 232 PET scans from 210 individuals. The target receptors

were 5-HT1AR, 5-HT1BR, 5-HT2AR and 5-HT4R and the transporter 5-HTT which were images with

the radioligand [11C]Cumi-101, [11C]AZ10419369, [11C]Cimbi-36, [11C]SB207145 and [11C]DASB,

respectively.

To perform the processing of the PET data within FS, the T1-weighted and PET images were

processed as described above. A linear model was then used to evaluate the association between the

regional BPND values and autoradiography measures from the literature [7, 6]. This association was

used to transform the BPND values derived from the PET data into comparable density values. Subse-

quently, we investigated the linear association between regional density values and mRNA intensities

obtained from the Allen Human Brain Atlas (AHBA, http://human.brain-map.org/, [75, 76]) Finally,

we tested for effects of gender or age using a linear mixed effect model.

mRNA data from the Allen Human Brain Atlas

Previous work from [75] processed the mRNA data and assigned a summary values to each region

defined in FS’s Desikan-Killiany atlas. To create summary values, [75] first obtained the average

mRNA levels for each of the genes of interest within each cortical probe. Then, they assigned each

of the probe to a region of the Desikan-Killiany atlas and for each gene, each region and each subject

they obtained median regional values across all probes. Finally, they calculated median values across

all subjects for each gene and each region to obtain the final summary values. In this study we used

this data directly as regional cortical values, and extended the procedure to subcortical regions. The

only difference adopted in our approach was to directly use the labels assigned by the AHBA to each

sample, rather than inferring a label based on the anatomical location of the probes.

Cerebellum segmentation

A particular methodological issue which arose in this project concerned the segmentation of the cere-

bellum. It has been shown that cerebellar vermis contains 5-HT1AR and possibly other 5-HT receptors

and may not be a suitable reference region. Hence, we adopted a procedure to label and remove ver-

mis from the cerebellum segmentation of FS used for the kinetic modeling of PET data. The software

30



SUIT 2.7 [77] in combination with SPM12 (http://www.fil.ion.ucl.ac.uk/spm) was used to segment

vermis and cerebellum. The final cerebellum segmentation was created by taking the intersection of

the segmentation provided by SUIT, without vermis, and the cerebellar gray matter segmentation pro-

vided by FS. Although FS provides greater detail in the delineation of gray and white matter tissue

compared to SUIT, it sometimes overlabels peripheral tissue. By limiting the final segmentation to the

intersection of the labels provided by the two algorithms, we were able to overcome these limitations.

This procedure formed the basis for an evaluation of the cerebellum and especially vermis as reference

region for kinetic modeling in a related paper [1].

Study III

The methodological aspect of this study firstly consisted of deriving the algorithms for VB-PARAFAC

and SP-PARAFAC (VB-PCA and SP-PCA were previously derived in [78]) and implementing VB-

PCA, SP-PCA, VB-PARAFAC and SP-PARAFAC. Then, we evaluated the algorithms against each

other through simulation and by using PET and fMRI data. Stability and reproducibility of the solu-

tions were assessed using the RV coefficient [79] and the average correlation coefficient between the

components, where optimal pairing was determined using the Hungarian algorithm [80] to optimize

correlation.

The simulation was performed by creating a 3-way dataset where three sparse ground truth vectors

were arbitrarily generated and linearly mixed to create five groups with random means, scalings and

additive Gaussian noise for each group. The different decomposition algorithms where then applied to

the simulated data and compared to the ground truth components.

We then performed an exploratory decomposition of dynamic PET data using the four models

implemented in this study, and additionally a non probabilistic version of the PARAFAC model imple-

mented in the N-WAY toolbox 3.21 [81]. We reused the data from 4 subjects scanned with [11C]Cumi-

101 in study II. This choice was motivated by the good temporal alignment of the PET data for these

subjects. The preprocessing was done as described in Study II, however, the data was processed in

the volume only and was normalized to MNI152 space and smoothed using a 5mm FWHM Gaussian

filter. The stability and reproducibility of the solutions was assessed and qualitatively compared.

Finally, we applied the models to fMRI data. The dataset was composed of 8 scans of a block-

design where subjects were instructed by visual cue to close and open their fist for 10 seconds at

approximately 1 Hz, followed by a rest period of 10 seconds and repeated 10 times. The preprocessing
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of fMRI data was performed using the standard work flow within FSL 5.0.9 [82]. The fMRI data

was motion corrected using MCFLIRT [83] and aligned with the structural image using FLIRT [83],

normalized to standard MNI152 space using FNIRT [84] and smoothed with a 8mm FWHM Gaussian

filter. Here again we applied the four models implemented in this study to the data and the non

probabilistic PARAFAC algorithm from the N-WAY toolbox. Additionally, we applied the tensor

extension of the probabilistic independent component analysis (PICA) algorithm, as implemented by

Melodic [85]. PICA is one of the most well-know dimensionality reduction tools for fMRI and formed

a gold-standard to benchmark our algorithms.
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Results

Study I

The main outcome of study I showed which brain regions are functionally connected with DR and

MR in the human brain at rest. Figure 7 and the accompanying Tables 1 and 2 present the significant

clusters that were observed. Interestingly, striking similarities can be seen between the FC maps for

DR and MR. As a post hoc analysis, we investigated the association between FC levels and BPND

measures and found a significant positive association for both DR and MR.

Dorsal Raphe Median Raphe

Figure 7: P-value maps (−log10(p)) of brain regions significantly associated with the DR and MR,

after correction for multiple comparison.
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Table 1. Significant clusters functionally connected with the DR at rest.
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Table 2. Significant clusters functionally connected with the MR at rest.

Study II

Regional, surface and volume BPND values were obtained for all subjects. We averaged regional values

for each target and investigated the linear association with corresponding autoradiography density

measures from the literature. We observed significant associations for all targets. Using the regression

slopes from these associations, we transformed the BPND into density values and created average

cortical and subcortical density maps, presented in Figure 8 and Figure 9. These maps display shared

spatial patterns, but also exhibit spatial features unique to only some of the targets. We tested for

associations between age, gender or their interaction and density, but none was found.
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Figure 8: Average cortical density maps for the five 5-HT targets (left hemisphere).

Figure 9: Average subcortical density maps for the five 5-HT targets.

Subsequently, we investigated the association between mRNA levels and density for the five tar-

gets; results are presented in Figure 10. For 5-HTT there was no significant association. The 5-HT1AR

showed a strong and significant association, including both cortical and subcortical regions. We ob-

served a moderate association for the 5-HT1BR and 5-HT2AR in cortical regions; the subcortical regions

deviated from the linear pattern exhibited by the cortical regions. Similarly, we observed a moderate

association for the 5-HT4R, but here the subcortical regions followed more closely the linear associa-

tion observed for the cortical regions.
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Figure 10: mRNA vs. density for the five 5-HT targets.

Study III

Components resulting from decomposing the simulated data with the Variational Bayes PCA and

PARAFAC (VB-PCA and VB-PARAFAC) and their sparse formulation (SP-PCA and SP-PARAFAC),

as well as a non probabilistic implementation of PARAFAC, are presented in Figure 11. All models

were able to identify the predefined ground truth components used to create the simulated data, but

to varying levels of accuracy. Both PCA type algorithms identified additional, unrelated components

compared to ground truth. As expected, VB-PCA identified non sparse components while its sparse

counterpart was able to prune smaller, non important weights. All PARAFAC models identified the

true number of components with the correct ground truth patterns; SP-PARAFAC was however better

at pruning unrelated weights.
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Figure 11: The ground truth components for the simulation and the components identified by the

different algorithms when applied to the simulation data.

When applied to the PET data, the two first components identified by all algorithms were similar

and the remaining components exhibited spatial patterns which appeared random. Figure 12 shows

component 1 and 2 for the VB- and SP-PARAFAC algorithms; the components identified by VB-PCA

and PARAFAC were similar to those of VB-PARAFAC and the ones from SP-PCA were similar to

those of SP-PARAFAC. Here the sparse algorithms did not isolate a specific brain region, as was

hoped, but instead pruned small weights in an apparent random pattern. We compared the fit of the

models to PET activity within different brain regions and all algorithms yielded comparable outcomes.

Figure 12: The first (left) and second (right) components identified by the VB-PARAFAC and SP-

PARAFAC algorithms.

The fMRI data was processed with all the algorithms and the significance maps for selected com-

ponents obtained with the different algorithms are presented in Figure 13. The fMRI task performed

here is known to produce ipsilateral activation and contralateral deactivation of the motor cortex and

activation of the visual cortex, due to the use of visual cues. Here, this pattern was well captured by

tensor PICA. Only one relatively noisy component including activation in visual and motor cortex was

captured by the non probabilistic PARAFAC model. This pattern was similar for both sparse algo-

rithms, although motor activation appeared more defined in SP-PARAFAC and was mostly absent in

SP-PCA. Both VB based algorithms identified components with motor and visual activation, but were
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not able to segregate the loading for the corresponding brain regions onto different components, as

was done by PICA, nor did they identify contralateral deactivation.

Figure 13: Selected visual and motor components identified by the different algorithms applied on the

fMRI dataset.
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Discussion

Study I

The clusters observed in Figure 7 represent brain regions functionally connected with our DR and MR

seeds. We observed an association between raphe FC and 5-HTT BPND suggesting that the signal from

DR and MR can be partly explained by features of the 5-HT system.

Interestingly, DR and MR are known to project mostly to separate, non overlapping regions of

the brain [21, 86]. However, they do share substantial amount of afferent projections [2]. Given

the striking similarity of the DR and MR FC maps, this suggests that the FC we have observed is

largely modulated by inputs to the raphe nuclei. Regions such as the mPFC have been shown to have

direct projections to the DR [87], and dysregulation of the mPFC has been implicated in a number of

disorders related to the 5-HT system such as anxiety, stress and depression [88, 89]. Recent findings

have also shown that some of the regions functionally connected to DR and MR show an increase in

5-HTT BPND after the administration of SSRI [90] in depressed patients. Notably, a recent study in the

rat which performed direct stimulation of serotonergic neurons via a technique termed chemogenetic

fMRI has also detected an increase in cerebral blood volume in most of the brain regions observed in

our study [91]. These observations substantiate the idea that the DR and MR FC maps presented here

may truly capture functional aspects of the 5-HT system.

However, although all efforts were made to obtain a purely serotonergic seed signal, it is difficult

to assess the extent to which this is uniquely captured. Indeed, as previously stated, the raphe nuclei

consist of an heterogeneous composition of cells which are largely serotonergic, but also contain other

types of neurotransmitters [19]. Furthermore, it is reasonable to assume that the DR signal might

be contaminated by signal of proximal regions such as the periaqueductal gray, a region involved in

nociception; this may partly explain the negative correlations in somatosensory cortex observed for

DR [92].

Study II

The high resolution 5-HT atlas created in this study highlights structural features of the 5-HT system.

This atlas complements and extends earlier work on similar data of relatively lower resolution [8]. The

strong associations between our in vivo BPND values and the autoradiography measures from the liter-

ature, across all targets, support the validity of PET imaging as a informative proxy for the underlying
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5-HT receptor densities. By transforming the BPND values into densities it is hence possible to directly

compare the distributions of different receptors. However, it is to be noted that the autoradiography

came from relatively older patients and this has to be considered when interpreting the density values

reported in this work.

An interesting novel aspect of this study is the evaluation of the spatial correspondence between

mRNA levels and the density of the associated 5-HT proteins. Although most of these associations

were previously observed, some of the targets were here investigated for the first time in humans.

Furthermore, the spatial correspondence of mRNA samples and density values to regions of an atlas

in a normalized space offers for the first time a uniform view of the 5-HT targets considered in this

study. For 5-HTT, there was no significant association between mRNA and density, consistent with

the fact that most of the mRNA for 5-HTT is located within the raphe nuclei [93]. This suggests that

neocortical expression of 5-HTT outside of the raphe nuclei is linked to localized mRNA brought by

axonal transport, and is independent of the local levels of mRNA. The neocortical expression of 5-HTT

may then possibly reflect some localized regulation of a neurological process, such as observed by [94].

The 5-HT1AR showed a strong association between mRNA levels and receptor density, supporting the

well-known postsynaptic localization of this receptor. The remaining 5-HT1BR, 5-HT2AR and 5-HT4R

receptors showed moderate associations. Remarkably, the subcortical regions for 5-HT1BR and 5-

HT2AR did not follow the linear association of the cortical regions, indicating intrinsic differences in

the synaptic localization of the receptors between cortical and subcortical regions.

Study III

The goals of this study were to develop probabilistic PARAFAC models to extract features indicative

of dynamic properties of the PET data and to evaluate their usefulness for the modeling of fMRI data.

The simulation clearly indicated that the algorithms performed as expected. VB-PCA and SP-PCA

were able to identify the ground truth components, but were more sensitive to noise compared to their

PARAFAC counter parts and identified additional, unrelated components. Conversely, the PARAFAC

algorithms were both able to identify the correct number of components, but the SP-PARAFAc was

better at pruning remaining unrelated weights compared to VB-PARAFAC. In both cases, the sparse

algorithms were better at pruning unrelated weights compared to their VB counter part.

Even though the models performed as expected on simulated data, their application on dynamic

PET data did not yield the desired results. In all cases, the algorithms yielded two components which
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mapped throughout the brain and additional random components. Although this was an exploratory

analysis, we had hoped to extract components which were loaded on specific, sparse brain regions.

These results are however consistent with the compartmental approach used in kinetic modeling; here

the models identified two basis functions which can be linearly mixed to obtain the temporal PET

activity of any brain region. Similarly, the standard kinetic models used for this data uses a two com-

partment model (e.g. MRTM2), with some of the rate constant usually fixed using a reference and a

high binding region [42]. Despite the fact that the models investigated here all achieved a good and

comparable fit of the data, a solution rooted in the understanding of the underlying physiology may be

preferable. Furthermore, although great efforts are usually made to achieve the same framing for all

dynamic PET scans of a given radioligand, small deviations are critical to our PARAFAC model. Un-

fortunately, when considering the PET data from study II, the PARAFAC model would not be directly

applicable due to timing variation between the injection of the radioligand and the start of the scan-

ner acquisition; temporal alignment of the PET frames would hence require substantial interpolation,

which is to be critically avoided.

When applied to fMRI data, the models considered here did not perform as well as tensor PICA in

term of identifying components where brain regions with different functions are uniquely loaded and

in identifying contralateral deactivation. This inadequate performance of the models can be linked to

a number of factors such as mismatches between the presentation of the visual cue and the subject’s

response or changes in the dynamic of the BOLD signal across patients beyond simple scaling. Hence

these results indicate that the PCA and PARAFAC models used here are inappropriate for the modeling

of fMRI signal across subjects and that more flexible models such as ICA are to be preferred.
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Concluding remarks and future perspectives

Study I suggests that raphe FC captures functional features of the 5-HT system related to the 5-HTT

density. Hence, raphe FC may represent a useful biomarker for probing the 5-HT system, however

further studies investigating its sensitivity to 5-HT related disease states are required. One of the main

features of this biomarker would be that it does not require costly PET imaging and could be obtained

directly from rs-fMRI. However, a few challenges need to be solved for this to happen. Firstly, a

replication of the raphe FC maps is critical to ensure the validity of the method. Furthermore, a

method for the delineation of the raphe nuclei independent of PET imaging is crucial for the wide-

spread investigation of raphe FC. ICA based methods [95, 96] have shown promising results in that

respect, but further validation is warranted. Finally, rs-fMRI acquired at high field strength (e.g. 7T)

and at a higher sampling frequency should be considered to prevent partial voluming effects and to

allow for a better separation between the signal of interest and physiological artifacts.

The atlas presented in study II shows one of the most complete pictures yet of the structural or-

ganization of the 5-HT system. It clearly outlines brain regions with unique characteristics in term

of 5-HT receptor density and possibly distinct brain functions. Current structural atlases, such as the

Desikan-Killiany atlas, do not define regions of homogeneous 5-HT receptor density. As part of future

work, the data used in study II will be leveraged to obtain a parcellation of cortex specific to the 5-HT

system where regions of homogeneous density will be better captured. Hence, we hope that this new

parcellation will be more sensitive to regional changes affecting the 5-HT system.

In study III we successfully derived and implemented two probabilistic PARAFAC algorithms.

When applied to the dynamic PET data, the algorithms yielded two latent vectors which were mapped

throughout all of the brain rather than onto discrete brain regions. This indicates that the dynamic

information of the PET data does not reveal additional information which can be used for parcellat-

ing the brain and that using a summary measures such as binding potential may be sufficient for that

purpose. We have also shown that the application of the algorithms to fMRI data does not improve

over one of the state-of-the-art technique used for that modality. Nonetheless, these algorithms may

still prove to be very useful in other contexts assuming that the underlying model assumptions are

respected. Furthermore, the variational Bayes framework is a very powerful framework and the expe-

rience gained in this work can potentially be extended to other types of algorithms such as dictionary

learning.

In conclusion, we have introduced a novel tool for the study of functional properties of the 5-
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HT system, derived a high resolution description of its structure and investigated the application of

advanced modeling strategies to generate a parcellation of the brain specific to that system. Hence, the

work presented in this thesis furthers our knowledge and understanding of the 5-HT system and opens

new avenues of investigation.
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Abstract

Serotonin (5-HT) is a neurotransmitter critically involved in a broad range of brain functions and 

implicated in the pathophysiology of neuropsychiatric illnesses including major depression, 

anxiety and sleep disorders. Despite being widely distributed throughout the brain, there is limited 

knowledge on the contribution of 5-HT to intrinsic brain activity. The dorsal raphe (DR) and 

median raphe (MR) nuclei are the source of most serotonergic neurons projecting throughout the 

brain and thus provide a compelling target for a seed-based probe of resting-state activity related 

to 5-HT. Here we implemented a novel multimodal neuroimaging approach for investigating 

resting-state functional connectivity (FC) between DR and MR and cortical, subcortical and 

cerebellar target areas. Using [11C]DASB positron emission tomography (PET) images of the 

brain serotonin transporter (5-HTT) combined with structural MRI from 49 healthy volunteers, we 

delineated DR and MR and performed a seed-based resting-state FC analysis. The DR and MR 

seeds produced largely similar FC maps: significant positive FC with brain regions involved in 

cognitive and emotion processing including anterior cingulate, amygdala, insula, hippocampus, 

thalamus, basal ganglia and cerebellum. Significant negative FC was observed within pre- and 

postcentral gyri for the DR but not for the MR seed. We observed a significant association 

between DR and MR FC and regional 5-HTT binding. Our results provide evidence for a resting-
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state network related to DR and MR and comprising regions receiving serotonergic innervation 

and centrally involved in 5-HT related behaviors including emotion, cognition and reward 

processing. These findings provide a novel advance in estimating resting-state FC related to 5-HT 

signaling, which can benefit our understanding of its role in behavior and neuropsychiatric 

illnesses.

Keywords

serotonin; resting-state; functional connectivity; dorsal raphe; median raphe

1 Introduction

The serotonin (5-hydroxytryptamine, 5-HT) neurotransmitter system is a critical component 

in the healthy functioning of the human brain and is involved in many functions such as 

sleep-wake cycle (Portas et al., 2000), reward (Liu et al., 2014), appetite (Curzon, 1990), 

emotion (Meneses and Liy-Salmeron, 2012), motor function (Di Matteo et al., 2008) and 

cognition (Meneses, 1999). Disruptions in the serotonin system have been implicated in a 

wide spectrum of neuropsychiatric disorders, including major depression disorder (Paul-

Savoie et al., 2011), anxiety (Sullivan et al., 2005), bipolar disorder (Mahmood and 

Silverstone, 2001), chronic stress (Jovanovic et al., 2011), and drug addiction (Müller and 

Homberg, 2014).

Serotonergic innervation of cerebral cortex, subcortical structures and cerebellum originate 

for the greater part from the dorsal (DR) and median (MR) raphe nuclei (Dorocic et al., 

2014; Hornung, 2003; Jacobs and Azmitia, 1992; Vertes and Linley, 2008). Thus, effects of 

serotonin signaling on brain function and behavior critically depend on appropriate 

communication with these nuclei. Despite substantial focus and clear relevance to 

delineating neurobiological mechanisms associated with various neuropsychiatric illnesses, 

the effects of serotonin signaling on brain function are not fully understood. Recent studies 

have reported that serotonin signaling modulates resting-state networks (RSNs) including 

the commonly studied default mode network (DMN) (Hahn et al., 2012; McCabe and 

Mishor, 2011). However, these studies have focused on networks modulated by serotonergic 

input rather than more directly modeling serotonin-related connectivity based on raphe 

nuclei intrinsic connectivity. The evaluation of the functional connectivity (FC) with DR or 

MR at rest would provide yet unreported novel insight into how serotonin signaling shapes 

intrinsic brain connectivity.

The purpose of this study was to elucidate FC of the DR and MR in the healthy human brain 

at rest. We used high resolution imaging of the serotonin transporter (5-HTT) with 

[11C]DASB positron emission tomography (PET), an effective probe of 5-HTT binding in 

receptor-rich regions (Frankle and Slifstein, 2006), combined with anatomical landmarks 

from structural magnetic resonance imaging (MRI) to determine subject-specific DR and 

MR regions of interests (ROIs). These ROIs were then transferred to functional MRI (fMRI) 

space where we performed seed-based FC to identify areas showing significant resting-state 

FC with DR and MR. Finally we correlated regional DR and MR FC with regional 5-HTT 

binding to assess the association between the identified FC maps and serotonin signaling.
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2 Methods

2.1 Participants

Data from 63 healthy women were collected at baseline as part of a broader randomized, 

placebo-controlled and double-blind intervention study. Subjects were scanned before 

(baseline) and after an intervention. In the current study, the baseline data was used for the 

main analysis and the placebo intervention data was included only for the test-retest 

evaluation. The placebo intervention consisted of a single subcutaneous injection of saline 

into the abdomen approximately 4 weeks prior to rescan. Additional details regarding the 

overall study design can be found elsewhere (Frokjaer et al., under review). Importantly, all 

fMRI and PET data were acquired at a fixed time relative to their menstrual cycle phase 

(follicular), as determined by ovarian ultrasound. The study was registered and approved by 

the local ethics committee under the protocol number H-2-2010-108. After complete 

description of the study, written informed consent was obtained from all participants.

Of the 63 participants, 14 were excluded due to excessive motion (detailed below in 2.5 

fMRI analysis) during the rs-fMRI scans at baseline. Thus rs-fMRI data from 49 participants 

(age 24.2 ± 4.7) was available for our analyses. To evaluate the reproducibility of the FC 

results, we repeated the FC analysis on data from the 20 participants that received placebo 

(age 25.6 ± 6.2) but were without excessive motion at baseline and rescan, using the seeds 

defined on the baseline PET images. DR and MR delineation was also performed on 

baseline and rescan PET images for these 20 participants and the overlap was evaluated.

2.2 Data acquisition

2.2.1 Magnetic resonance imaging (MRI)—Participants completed a 10-minute rs-

fMRI scan (280 volumes) acquired on a Siemens (Erlangen, Germany) 3T Verio MR 

scanner. During rs-fMRI scans, participants were instructed to close their eyes, but not to 

fall asleep. The participants were asked after the scan whether they fell asleep during the 

scan; all participants reported not falling asleep. Scans were acquired using a T2*-weighted 

gradient echo-planar imaging (EPI) sequence sensitive to blood-oxygen level dependent 

(BOLD) signal (TR=2.15 s, TE=26 ms, flip-angle=78°, in-plane matrix 64x64, number of 

slices=42, voxel size=3x3x3 mm, GRAPPA acceleration factor 2, no gap, interleaved slice 

order). Pulse and respiratory data were sampled at 50 Hz using the Siemens' Physiological 

Monitoring Unit.

A high-resolution 3D T1-weighted structural image was acquired using a sagittal, 

magnetization prepared rapid gradient echo (MP-RAGE) sequence (TE/TR/

TI=2.32/1900/900 ms, flip angle=9°, in-plane matrix 256x256, number of slices=224, voxel 

size=0.9x0.9x0.9 mm, GRAPPA acceleration factor 2, no gap, acquisition time = 8 min 30 

sec). A high-resolution 3D T2-weighted image was acquired using a sagittal, Turbo Spin 

Echo (TSE) scan of the whole head (TE/TR= 409/3200 ms, flip angle=120º, in-plane matrix 

256x256, number of slices=176, voxel size=1x1x1 mm, GRAPPA acceleration factor 2, 

acquisition time = 4 min 43 sec).
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2.2.2 [11C] DASB positron emission tomography (PET) imaging—[11C]DASB 

PET list-mode data were acquired with a Siemens ECAT HRRT scanner operating in 3D-

acquisition mode, with an approximate in-plane resolution of 2 mm. Scan duration was 90 

minutes and started immediately after bolus injection of 585 ± 34 MBq [11C]DASB. Thirty-

six dynamic PET frames (6x10 sec, 3x20 sec, 6x30 sec, 5x60 sec, 5x120 sec, 8x300 sec, 

3x600 sec) were reconstructed using a 3D-OSEM-PSF algorithm (Comtat et al., 2008; Hong 

et al., 2007; Sureau et al., 2008). Realignment of PET frames was performed using AIR 

5.2.5 (Woods et al., 1992) to account for within-scan motion.

5-HTT binding was quantified as [11C]DASB nondisplaceable binding potential (BPND) 

values determined with the Multilinear Reference Tissue Model 2 (Ichise et al., 2003) as 

previously described (Frokjaer et al., 2014). The kinetic modeling was performed using 

Freesurfer (Greve et al., 2013) with cerebellum gray matter segmentation as reference region 

and a combined thalamus, caudate, putamen and pallidum region as the high binding region 

for determining k2’. Surface and volume [11C]DASB BPND maps were smoothed by 10 and 

6 mm full width half maximum (FWHM) Gaussian 2D and 3D filters, respectively.

2.3 Anatomical MRI Analysis

Structural images was analyzed in FreeSurfer (FS, surfer.nmr.mgh.harvard.edu, version 5.3) 

(Dale et al., 1999; Fischl and Dale, 2000; Fischl et al., 1999a, 1999b; Greve and Fischl, 

2009; Ségonne et al., 2007, 2004). The T2-weighted structural images were used to refine 

the delineation of the pial surfaces. This process creates mesh models of the cortical surfaces 

and labels cortical and subcortical ROIs customized to each subject. Some of these ROIs 

were used to help create search spaces for the DR and MR. The cortical surfaces were 

aligned with a cortical surface atlas using nonlinear surface-based registration (Fischl et al., 

1999a). This atlas is the surface-based equivalent to Talairach or MNI space and serves as a 

space in which voxel-wise group analysis can be performed on the surface. The anatomical 

volume was also registered to the MNI305 atlas which serves as the group analysis space for 

volume-based analysis of subcortical structures.

2.4 Delineation of DR and MR

Histological studies performed by Baker and colleagues (1991a, 1991b, 1990) have provided 

in-depth knowledge of the morphology and location of the DR and the MR in the ex vivo 

human brain. However, to perform seed-based FC, accurate in vivo segmentation of DR and 

MR are needed (Kalbitzer and Svarer, 2009). This presents a challenge (Kranz and Hahn, 

2012), as the raphe nuclei are composed of sparse neurons surrounded by white matter and 

they have no well-defined boundaries visible in MRI (Baker et al., 1996, 1991a, 1990).

We have adopted a method similar to (Schain et al., 2013) in which liberal search volumes 

were defined on the structural MRI and then refined using the PET image. The DR lies on 

the midline of the brainstem and extends from the oculomotor nucleus to the middle of the 

pons (Baker et al., 1990). It can be subdivided at the level of the isthmus into two groups, a 

midbrain (B7) group and a pontine (B6) group (Dahlström and Fuxe, 1964) which meet near 

the inferior opening of the cerebral aqueduct (CA). The B7 group is adjacent to the CA. The 

B6 group is only about 0.5 mm in radius, well below current scanner resolution for fMRI. 
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For this reason, we focused on the B7 group as the seed region for our analysis. The search 

volume for the DR was defined from the inferior to the superior limit of the CA and from 

the anterior boundary of the CA to approximately 6mm (5 voxels) anterior to that boundary. 

Lateral boundaries definitions were not needed for the refinement procedure.

The MR also lies on the midline of the brainstem and extends from the caudal pole of the 

DR to, approximately, the decussation of the superior cerebellar peduncle (Baker et al., 

1991a). Based on this description, the search volume for the MR was defined from the 

inferior boundary of the CA down, and from the anterior limit of the 4th ventricle to (6 mm) 

5 voxels anterior to that limit. Neither inferior nor lateral limits were needed for the 

refinement procedure.

The DR and MR search spaces were refined using a mean [11C]DASB image created by 

integrating the number of counts over time of the PET frames. The mean PET image was 

smoothed using a 3-voxel median filter to reduce spatial noise while preserving border 

(edge) integrity (Chin and Yeh, 1983) between the raphe and ventricular space. For 

delineation of the DR and MR, we used the mean uptake instead of the BPND because the 

kinetic modeling is noisy and requires spatial smoothing, which could introduce spatial 

uncertainty due to the proximity of low count regions such as the CA and 4th ventricle. The 

mean uptake image of a subject was registered to the gradient distortion (GD) corrected 

structural MRI using boundary-based registration (BBR) which has been shown to be a 

highly robust and accurate cross-modal registration technique (Greve and Fischl, 2009). GD 

correction was performed as described in Jovicich et al. (2006). This allowed for anatomical 

landmarks be transferred onto the PET image and to subsequently transfer back the seed 

region onto the structural MRI.

The refinement procedure was iterative. The first voxel of the ROI was defined by the 

highest PET value within the search volume. Subsequent voxels were added iteratively by 

selecting the voxel with the highest value within the neighborhood of the already-defined 

ROI until a target total volume was reached. The total volume of serotonergic neurons in the 

DR has been estimated to be 71.3±4.5 mm3 (Baker et al., 1990). However, Schain et al. 

(2013) suggested to use a volume estimate of 150 mm3, as the DR is composed of both grey 

and white matter. Based on the fact that the DR, excluding the caudal subnucleus, is about 

57 mm3, we used a target volume of 115 mm3. The target volume used for the MR was 64 

mm3, as suggested by Kranz & Hahn (2012). This procedure was applied to enforce local 

convergence; more lenient clustering methods, such as taking the maximum voxels within 

the search volume, led to structurally inhomogeneous ROIs, inconsistent with the 

morphology of the DR and MR. Once the iterative process completed, the seed was 

transferred onto the GD corrected structural MRI and an inverse gradient unwarping (i.e., 

reintroduction of gradient non-linearities) was applied to the ROIs to match gradient non-

linearities present in the BOLD fMRI images.

2.5 fMRI analysis

The resting-state fMRI volumes were motion corrected using AFNI’s 3dVolReg (Cox and 

Hyde, 1997; Cox, 1996). Physiological noise was removed in a two-step procedure. First the 

raw time series was corrected for physiological noise using PESTICA v2 (Beall and Lowe, 
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2007; Beall, 2010) in conjunction with the respective cardiac and respiratory recordings. 

The second step, described more below, involved including nuisance regressors in the time 

series analysis. Spatial distortion caused by inhomogeneity of the B0 magnetic field was 

removed (Jezzard and Balaban, 1995). The DR, MR and aCompCor time series were then 

extracted from these data, prior to further processing (e.g. spatial filtering). Extracting the 

time series prior to spatial smoothing assures that signal outside of the target region does not 

corrupt the waveform.

The fMRI analysis was performed in the FreeSurfer Functional Analysis Stream (FSFAST, 

surfer.nmr.mgh.harvard.edu/fswiki/FsFast). The fMRI was registered to the structural MRI 

using BBR. In FSFAST, the time series analysis is separated into cortical and subcortical 

streams. In the cortical stream, the fMRI time series was sampled onto the left and right 

cortical surfaces and smoothed (Hagler Jr. et al., 2006) with a 10mm FWHM Gaussian filter. 

Smoothing on the surface reduces the blurring of white matter, cerebrospinal fluid, and 

subcortical gray matter with cortical gray matter as well as blurring across adjacent gyri. The 

surface time series data were then sampled into the group space of surface atlas. The 

subcortical structures were sampled into MNI305 space and volume smoothed with a 6mm 

FWHM Gaussian filter.

A general linear model (GLM) used to fit the time series data consisted of the DR or MR 

time series as well as several nuisance regressors. A high-pass filter (cutoff 0.01 Hz) was 

implemented by including polynomial regressors up to order 17. Noise of non-neuronal 

origin was estimated using aCompCor (Behzadi et al., 2007). As suggested by Chai et al. 

(2012), a mask was constructed combining white matter and ventricular and sulcal 

cerebrospinal fluid as defined for each subject from the FreeSurfer anatomical analysis; the 

mask was eroded by 1 anatomical voxel. The first 5 principal components of the BOLD time 

series from this mask were used as nuisance regressors. The six motion estimates were also 

used as nuisance regressors. The Euclidean norm of the first difference of the motion 

estimates, ||d||2, was computed (Jo et al., 2013). Frames containing excessive motion, based 

on the criterion ||d||2>0.2, were censored. A given frame at time t was censored by adding to 

the GLM a regressor where all values were 0 except at time t where the value was 1. For a 

given censored frame at time t, additional censoring regressors were also created for the 

previous frame (t-1) and the two subsequent frames (t+1) and (t+2). A subject’s data was 

excluded if more than 10% (28 frames) of the resting-state data were censored. The DR and 

MR were analyzed using different GLMs.

Group analysis was performed using a voxel-wise two-tailed t-test to determine the areas 

where the group means of the DR or MR regression coefficient was significantly different 

than zero. Correction for multiple comparisons was performed using a cluster-wise 

correction (Friston et al., 1994; Hagler Jr. et al., 2006). Clusters were defined using a voxel-

wise threshold of p<0.001. Clusters with cluster-wise p<0.05 were deemed significant.

2.6 Association between FC and 5-HTT binding

The association between FC and 5-HTT binding was evaluated using a linear regression 

analysis. For every subject, we computed the mean [11C]DASB BPND and mean FC for the 

42 cortical and subcortical brain regions defined by FreeSurfer as containing gray matter 
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(left and right hemispheres were averaged together) and we computed the within-subject 

slope for [11C]DASB BPND against FC. We then performed a two-tailed t-test to determine 

whether the distribution of slopes across subjects was different than 0.

3 Results

3.1 DR and MR seeds

An example of DR and MR segmentation is shown in Figure 1. The average centroid of the 

DR was (0, −31 −9) in MNI305 space; that of the MR was (0,−35,−21). Although the 

volume of the seeds defined on the PET images was constant, the reintroduction of GD 

slightly affected the final volume of the seeds from subject to subject; the volume (mean ± 

std) was 118±11mm3 for DR and 65±8mm3 for MR. For the same reason, the number of 

functional voxels was 18±3 for DR and 11±2 for MR. The median correlation between the 

DR and MR raw time-series was 0.26 (range −0.24 − 0.62).

3.2 FC of the DR and MR and its association with 5-HTT binding

The group-level FC maps revealed that the DR seed was functionally connected with 

multiple cortical and subcortical regions (Figure 2; Table 1). For the cortical surface, we 

observed significant bilateral positive FC within the parahippocampal gyrus, insula and 

rostral anterior cingulate (rACC). Clusters showing significant negative FC were observed 

bilaterally within somatosensory areas including paracentral lobule and the pre- and 

postcentral gyrus and minor negative clusters were observed in superior parietal lobule and 

superior frontal gyrus. For subcortical regions, we observed a large cluster centered on the 

seed in brainstem showing statistically significant positive FC. This cluster extended outside 

brainstem to include regions of the basal ganglia (putamen, caudate, pallidum, accumbens), 

limbic structures (hippocampus and amygdala), thalamus, cerebellum and ventral 

diencephalon.

Group-level FC results for MR were largely similar to DR results (Figure 3; Table 2). On the 

cortical surface, we observed significant bilateral positive FC within the parahippocampal 

gyrus, insula and rACC. Subcortically, we observed a cluster centered on the seed and 

extending outside brainstem and including putamen, caudate, pallidum, hippocampus and 

amygdala, thalamus, cerebellum, ventral diencephalon and accumbens area.

A prominent difference between the DR and MR FC maps was significant negative FC for 

the DR but not the MR. FC for both seeds had some overlap but also covered distinct and 

separate areas (Figure 4). A subject-wise paired t-test between DR and MR FC results 

showed a significant difference (voxel threshold p=0.001 and cluster threshold p=0.05) only 

within the postcentral and superior frontal gyri and brainstem; as the seed was located in 

brainstem the latter difference will not be addressed further.

Since serotonergic neurons (and axons) are abundant in 5-HTT and it has been shown that 

co-localization between 5-HT and 5-HTT positive fibers is close to 100% (Nielsen et al., 

2006) we evaluated if DR or MR FC was correlated with 5-HTT binding at a regional level. 

For both seeds we observed a significant positive association between [11C]DASB BPND 

and FC (p <0.0001) (Figure 5).
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3.3 Test-retest evaluation of the FC maps and raphe delineation

Test-retest differences were evaluated by comparing baseline and rescan data for 20 

participants who received a placebo and whose rs-fMRI data did not contain excessive 

motion on both baseline and rescan. First, new DR and MR seeds were generated on the 

baseline structural MRI with the rescan PET images. The median overlap was 31% (range 

15%–42%) for DR and 37% (range 24%–53%) for MR and the median volume difference 

was 13 mm3 (range 3 – 27 mm3) for DR and 11 mm3 (range 1 – 30 mm3) for MR; see 

Supplementary Figure 1 for an example of DR and MR delineation at baseline and rescan. 

Next, new FC maps were generated for both the baseline and rescan fMRI using the baseline 

seed definitions (Supplementary Figure 2–3). The clusters looked similar but more spatially 

constrained and with a lower statistical significance due to the reduced sample size (only 20 

subjects versus 49). The group-level results of the paired difference between the FC maps at 

baseline and rescan showed no statistically significant clusters. Finally, new FC maps were 

generated from the rescan fMRI using the rescan seed definitions (Supplementary Figure 2–

3). Again, the maps looked similar to when the baseline seeds were used and no statistically 

significant difference was observed between the two maps.

4 Discussion

Here we sought to investigate serotonin-related FC using a multimodal neuroimaging 

approach for delineation of the DR and MR within a cohort of 49 healthy women. We 

identified brain regions significantly functionally connected with both nuclei and observed a 

statistically significant association between raphe FC and 5-HTT binding suggesting a 

compelling serotonergic component to the intrinsic brain activity related to the raphe nuclei.

We observed significant and distributed FC between both raphe seeds and medial prefrontal 

cortex (mPFC) and anterior cingulate cortex (ACC). Structural evidence supports the 

presence of direct reciprocal projections between mPFC and raphe (Behzadi et al., 1990; 

Peyron et al., 1998; Vertes and Linley, 2008; Vertes, 1991) and direct stimulation of mPFC 

has been shown to modulate raphe 5-HT neuron activity (Hajós et al., 1998). 

Electrophysiological evidence from rodents indicates that mPFC-raphe feedback is 

modulated via serotonin 1A, 2A and 4 receptor signaling (Celada et al., 2001; Lucas et al., 

2005; Riad et al., 1999; Sharp et al., 2007) and that stimulation of mPFC axons in the DR 

induces a rapid antidepressant-like behavioral effect (Warden et al., 2012). Furthermore, two 

human neuroimaging studies from our lab have also demonstrated an association between 

mPFC 5-HTT binding and cortisol awakening response, a putative marker of stress 

responsiveness (Frokjaer et al., 2014, 2013). From a clinical perspective, the prominent 

raphe-mPFC FC that we observed is also particularly interesting considering converging 

evidence that mPFC dysfunction is linked to a myriad of neuropsychiatric illnesses 

including depression and may affect treatment response (Mayberg et al., 2005; Pizzagalli, 

2011). Although rs-fMRI does not allow us to disentangle directionality (i.e., raphe to mPFC 

signaling or vice versa), our findings of significant connectivity between these regions 

supports this as an informative approach for delineating serotonin-related raphe-mPFC 

circuit function. Future studies employing this approach would benefit our understanding of 

its relevance in predicting prefrontal-mediated behaviors or neuropsychiatric illnesses.
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A prominent feature of our results is the large overlapping subcortical clusters of positive 

FC common to both raphe seeds (see Figure 4). The observation of a singular subcortical 

cluster is somewhat uninformative about region-specific FC. Thus, we evaluated FC maps at 

more conservative voxel-level thresholds of p<10−3, 10−5 and 10−7. Even at these 

thresholds, subclusters did not emerge. We think it is unlikely that this one large cluster is 

simply an artifact reflecting the combination of 6mm spatial smoothing and the raphe seed 

correlating with itself. Although the cluster peak is located in the raphe seed, other activated 

structures are far away. For example, thalamus is approximately 25mm away and basal 

ganglia and hippocampus are more than 30mm away. These distances are more than 10 

standard deviations of the 6mm FWHM kernel away from the raphe seed, so FC is unlikely 

to be simple spill-over from raphe. Our observation that regional FC and 5-HTT are 

positively correlated and that many of these subcortical regions have high 5-HTT binding 

suggests that the presence of a single large subcortical cluster may reflect, in part, 

serotonergic effects on FC. Further evaluation of raphe connectivity with recently described 

methods that may limit smoothing effects may prove effective in delineating discrete 

clusters (Beissner et al., 2014). However, similar subcortical RSNs have previously been 

identified in a number of studies and have been referred to as a limbic or basal ganglia RSN 

(Damoiseaux and Beckmann, 2008; Janes et al., 2012; Kim et al., 2013; Martino and 

Scheres, 2008; Moussa et al., 2012; Robinson et al., 2009, 2008; Schöpf and Kasess, 2010; 

Smith et al., 2009). However, their functional relevance was in many cases not considered. 

Our results suggest that this subcortical RSN is related to intrinsic raphe activity and may be 

associated with the 5-HT system. Although some studies reporting similar FC maps using 

seed-based analysis (Kong et al., 2010; Martino and Scheres, 2008), most studies used ICA 

methods, which decompose the rs-fMRI signal into a predefined number of components. 

However, many independent components are required when using ICA methods to isolate 

the subcortical RSN (e.g. Janes et al. (2012) used 35 components), which can segregate 

salient networks such as the DMN into multiple components. Particular care is needed when 

using ICA to identify subcortical RSNs and in the context of studying serotonergic features, 

such as a relation with mPFC, a hypothesis-driven approach such as our seed-based method 

might be advantageous to a purely data-driven method like ICA.

Converging evidence supports an association between structural and functional connectivity 

at rest within the human brain (Hermundstad et al., 2013; Heuvel and Mandl, 2009). 

Although efferent and afferent raphe projections have been studied extensively, the bulk of 

this work was performed in animal models and caution needs to be taken when interpreting 

human data in light of these studies. Nonetheless, the observed raphe FC maps appears to be 

generally consistent with the overall known DR and MR projections, although discrepancies 

can be found (see Vertes and Linley (2008) for an extensive review of the raphe 

projections). It is interesting to note that although DR and MR have efferent projections to 

distinct brain areas (Vertes and Linley, 2007; Vertes, 2004), they mostly share afferent 

projections from common brain areas and there is extensive innervation between the nuclei 

(Vertes and Linley, 2008). These features could explain the striking similarity between the 

two FC maps. However, one of the most noticeable differences between the FC maps is the 

presence of significant negative FC within postcentral and superior frontal gyri for the DR 

but not for MR. Interestingly, DR has been shown to modulate a nociceptive pathway 
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including somatosensory cortex (Prieto-Gómez et al., 1989; Reyes-Vazquez et al., 1989; 

Wang and Nakai, 1994), which may underlie the observed FC with this region. 

Alternatively, our seed may capture signal from the neighboring periacqueductal gray, a 

region also involved in nociception (Kong et al., 2010; Linnman et al., 2012). The spatial 

resolution of our functional images makes it difficult to spatially disentangle these regions. 

Thus, future higher-resolution studies (e.g., at 7T) would help resolve this overlap. 

Nonetheless, given the association we have identified between raphe FC and 5-HTT binding 

and the striking similarity between MR, distinct from periacqueductal gray, and DR FC 

maps, our method may provide a novel method for probing the association between 

nociception and the 5-HT system.

5 Limitations and technical concerns

We attempted to effectively account for inherent challenges when estimating raphe FC, 

however our study is not without limitations. Our target regions and the resulting ROIs are 

very small, which makes them susceptible to motion and being in brainstem makes them 

sensitive to physiological noise (Brooks and Faull, 2013). Although these issues are a 

concern, we have taken steps to minimize these effects including strict exclusion criteria 

based on motion estimates and implementation of current tools for correction of 

physiological noise. However, it is plausible that physiological noise not well captured by 

these methods represents a potential confound. Furthermore, our test-retest evaluation 

showed no significant group-level differences. Recent work using ICA has shown that it 

might be possible to identify brainstem nuclei using conventional fMRI, which might 

provide an alternative method to our approach (Beissner et al., 2014), however the 

physiological validity of this technique still needs to be proved. A recent study has 

demonstrated that subjects may drift between wakefulness and sleep during rs-fMRI 

(Tagliazucchi and Laufs, 2014). As the 5-HT system is linked to wakefulness (Portas et al., 

2000; Shima et al., 1986) this is a potentially important source of variation. Although 

subjects indicated that they did not sleep during the resting-state scan session, robust 

monitoring of the awake state could be secured in future studies using MRI-compatible 

EEG. Given that our dataset comprised only women, future studies in males would inform 

whether our observed FC maps are sex-specific. Finally, although we feel that the nature of 

the placebo intervention is unlikely to have perturbed serotonin signaling or rs-fMRI 

connectivity, we cannot rule this out as a potential source of additional variability affecting 

the test-retest of our data.

DR and MR notably also include non-serotonergic neurons, which may limit the extent to 

which these maps capture features specific for 5-HT signaling. Approximately half of the 

neurons within DR and MR are serotonergic (Jacobs and Azmitia, 1992; Steinbusch et al., 

1980; Wiklund et al., 1981) and the 5-HT and non-5-HT containing neurons have distinct 

electrophysiological properties (Beck and Pan, 2004; Hornung, 2003; Kirby et al., 2003; 

Michelsen et al., 2007), thereby limiting the extent to which these maps may reflect effects 

of 5-HT, specifically. Future studies directly manipulating 5-HT (e.g., using a 

pharmacological challenge such as tryptophan depletion or 5-HTT inhibition) could be an 

effective probe for evaluating aspects of the serotonergic contribution to raphe FC.
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6 Conclusion

We have demonstrated a biologically driven method for accurate delineation of the DR and 

MR ROIs in neuroimaging studies. We then performed a seed-based analysis and identified 

FC related to these nuclei. The FC map were very similar for both seeds; positive FC was 

found with cortical regions such as rACC, insula, parahippocampal gyrus and subcortical 

regions such as basal ganglia, thalamus, hippocampus, amygdala and cerebellum. We found 

a positive association between raphe FC and 5-HTT binding supporting a serotonergic 

contribution to the observed resting-state signal. Our results suggest that raphe FC is related 

to the previously identified subcortical RSN. Further investigation of this network might 

prove similarly useful for studying 5-HT related brain disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We investigated serotonin-related resting-state functional connectivity (FC).

• We present a novel multi-modal method for delineating the dorsal and median 

raphe.

• Functional connectivity of these nuclei at rest was evaluated.

• Brain regions functionally connected to the raphe nuclei were identified.

• Raphe FC was positively associated with serotonin transporter binding.
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Figure 1. 
(A) Structural MRI image. The raphe nuclei are not identifiable. (B) [11C]DASB PET image 

superimposed on the corresponding structural image, highlighting the 5-HTT system. The 

raphe nuclei are visible within brainstem as regions of higher binding. (C)Delineation of the 

DR and MR nuclei based on [11C]DASB PET. (D) DR and MR identified from the 

[11C]DASB PET image transferred as seeds onto the structural image.
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Figure 2. 
Group-level FC map for the DR seed, inflated cortical surface and in volume. The map 

displays clusters of statistically significant FC, corrected for multiple comparisons. Color 

scales reflect -log10(p) values. Negative p-values (blue) are used to denote regions 

exhibiting negative FC. The six axial slices correspond to Z = −20, −15, −10, −5, 0 and 5 

(left to right). Right is right in axial images.
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Figure 3. 
Group-level FC map for the MR seed, inflated cortical surface and in volume. The map 

displays clusters of statistically significant FC, corrected for multiple comparisons. Color 

scales reflect −log10(p) values. No statistically significant negative FC was observed. The 

six axial slices correspond to Z = −20, −15, −10, −5, 0 and 5 (left to right). Right is right in 

axial images.
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Figure 4. 
Overlap of significant negative or positive FC of DR and MR. Blue corresponds to DR only, 

green MR only and red is the overlap between DR and MR. Most clusters overlap to some 

extent, except for the pre- and postcentral gyrus for DR. The six axial slices correspond to Z 

= −20, −15, −10, −5, 0 and 5 (left to right), right is right in axial images.
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Figure 5. 
(A) Example of single-subject association between [11C]DASB BPND vs. FC with DR 

across 42 brain regions (see section 2.6 for details). β represents the slope estimate and 

shading along line represents 95% confidence interval (CI) on slope estimate. (B) Gray 

points reflect single subject slope estimates for each respective seed and black dots and lines 

reflects mean and 95% CI across subjects. The DR and MR slope estimates are mostly 

positive, indicating a positive association between 5-HTT binding and raphe FC in the vast 

majority of individuals.
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A High-Resolution In Vivo Atlas of the Human Brain’s
Serotonin System
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The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many
neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain’s 5-HT
receptors (5-HT1A , 5-HT1B , 5-HT2A , and 5-HT4 ) and the 5-HT transporter (5-HTT). The atlas is created from molecular and structural
high-resolution neuroimaging data consisting of positron emission tomography (PET) and magnetic resonance imaging (MRI) scans
acquired in a total of 210 healthy individuals. Comparison of the regional PET binding measures with postmortem human brain autora-
diography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein
densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in
the human brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and
transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled
insight into the serotonin system of the human brain.

Key words: 5-HT; atlas; autoradiography; MRI; mRNA; PET

Introduction
Serotonin (5-hydroxytryptamine, 5-HT) is a highly evolutionary
conserved monoamine neurotransmitter that, across species,

modulates multiple psychophysiological functions. In the human
brain, 5-HT is synthesized within the brainstem’s raphe nuclei,
which have distributed efferent and afferent projections through-
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Significance Statement

We present a high-resolution positron emission tomography (PET)- and magnetic resonance imaging-based human brain atlas of
important serotonin receptors and the transporter. The regional PET-derived binding measures correlate strongly with the
corresponding autoradiography protein levels. The strong correlation enables the transformation of the PET-derived human
brain atlas into a protein density map of the serotonin (5-hydroxytryptamine, 5-HT) system. Next, we compared the regional
receptor/transporter protein densities with mRNA levels and uncovered unique associations between protein expression and
density at high detail. This new in vivo neuroimaging atlas of the 5-HT system not only provides insight in the human brain’s
regional protein synthesis, transport, and density, but also represents a valuable source of information for the neuroscience
community as a comparative instrument to assess brain disorders.
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out the brain (Dorocic et al., 2014). The 5-HT system is highly
diverse (Hannon and Hoyer, 2008). Based on structural, trans-
ductional, and operational features, its receptors have been
grouped into seven families of receptors (5-HT1 to 5-HT7), in-
cluding 14 known subtypes, and a transporter (5-HTT). Of the 14
receptors, there are 13 distinct G-protein-coupled receptors and
one ligand-gated ion channel receptor, 5-HT3. 5-HT is involved
in myriad physiological functions such as cognition (Meneses,
1999), mood and social interaction (Young and Leyton, 2002),
sexual behavior (Waldinger, 2015), feeding behavior (Magalhães
et al., 2010), the sleep–wake cycle (Portas et al., 2000), and ther-
moregulation (Cryan et al., 2000). Disturbances in the 5-HT sys-
tem are also linked to many debilitating brain disorders such as
major depression, anxiety, and schizophrenia, as well as migraine
and neurodegenerative disorders (Muller and Jacobs, 2009). The
role of the individual receptors in the different functions and
disorders is, however, only partially known. A prominent exam-
ple is that, even though the 5-HTT inhibitors (selective serotonin
reuptake inhibitors) are the most frequently prescribed antide-
pressant drug class, the exact involvement of individual 5-HT
receptors in mediating their clinical effects is still unclear. To
study the role of the individual receptors in healthy individuals,
in patients with brain disorders, and in response to physiological
or drug interventions, in vivo molecular brain imaging with pos-
itron emission tomography (PET) in conjunction with an appro-
priate radiotracer represents the state-of-the-art approach for
quantifying the density and spatial distribution of brain receptors
and transporters.

Brain atlases play a key role in neuroimaging research. Stereo-
tactic atlases of magnetic resonance imaging (MRI) brain mor-
phology such as the Talairach (Talairach and Tournoux, 1988)
and the Montreal Neurological Institute (MNI) atlas (Evans et al.,
1992) have become fundamental pillars for performing group
analysis and anatomical segmentations such as the Automated
Anatomical Labeling atlas (Tzourio-Mazoyer et al., 2002) are
commonly used to report results of regional outcomes of brain
imaging data. A high-resolution human brain atlas of 5-HT
receptors will represent a valuable tool for neuroimaging stu-
dies investigating the 5-HT system and disorders related to its
dysfunction.

The distribution of 5-HT receptors in the human postmortem
brain has in the past been described extensively by autoradiogra-
phy. However, autoradiography measurements, although quan-
titative, provide far less spatial information than a whole-brain
atlas. With the development of well validated radioligands for
imaging the 5-HT system in vivo, it is now possible to image
specific 5-HT receptor subtypes and the 5-HTT. Up to now, spe-
cific and validated PET radioligands for use in humans have been
developed for the receptors 5-HT1AR, 5-HT1BR, 5-HT2AR, and
5-HT4R and for 5-HTT (Paterson and Kornum, 2013). A radio-
ligand for the 5-HT6 receptor has been validated in humans
(Parker et al., 2012), but was not included here because it also has
high affinity to the 5-HT2A receptor (Parker et al., 2015).

We here present an MRI- and PET-based high-resolution at-
las of the human brain 5-HT receptors 5-HT1AR, 5-HT1BR,
5-HT2AR, and 5-HT4R and the 5-HTT, represented both in vol-
ume and on the cortical surface. The atlas was generated using a
subset of the Center for Integrated Molecular and Brain Imag-
ing’s (Cimbi’s) extensive database (Knudsen et al., 2015), includ-
ing 210 healthy volunteers aged between 18 and 45 years.
Regional PET binding values were compared with corresponding
postmortem autoradiography data (Bonaventure et al., 2000;
Varnäs et al., 2004), allowing us to validate our results and
convert binding values into densities (Bmax). Furthermore,
regional densities were compared with mRNA levels from the
Allen Human Brain Atlas (Hawrylycz et al., 2012; French and
Paus, 2015) to confirm previous findings and to gain novel
insights into the localization of the receptor/transporter pro-
tein versus its expression.

Materials and Methods
Participants. All participants included in this study were healthy male and
female controls from the Cimbi database (Knudsen et al., 2015); all data
from this database are freely accessible. The data analysis was restricted to
include individuals aged between 18 and 45 years. Participants were re-
cruited by advertisement for different research protocols approved by the
Ethics Committee of Copenhagen and Frederiksberg, Denmark. A total
of 232 PET scans and corresponding structural MRI scans were acquired
for 210 individual participants; 189 subjects had only one scan, 20 sub-
jects had two scans, and a single had three scans. Demographics details
are presented in Table 1.

PET and structural MRI. PET data were acquired in list mode on a
Siemens HRRT scanner operating in 3D acquisition mode with an ap-
proximate in-plane resolution of 2 mm (1.4 mm in the center of the field
of view and 2.4 mm in cortex; Olesen et al., 2009). PET frames were
reconstructed using a 3D–OSEM–PSF algorithm (Comtat et al., 2008;
Sureau et al., 2008). Scan time and frame length were designed according
to the radiotracer characteristics. Dynamic PET frames were realigned
using AIR 5.2.5 (Woods et al., 1992; see Table 2 for details on framing and
realignment). T1- and T2-weighted structural MRI were acquired on
four different Siemens scanners with standard parameters. All structural
MRIs (T1 and T2) were unwarped offline using FreeSurfer’s gradient-
_nonlin_unwarp version 0.8 or online on the scanner (Jovicich et al.,
2006). For further details on structural MRI acquisition parameters, see
Knudsen et al. (2015).

Further processing was performed with FreeSurfer 5.3 �Fischl, 2012;
http://surfer.nmr.mgh.harvard.edu� using a surface and a volume
stream. The individual cortical surfaces were reconstructed using the
structural MRI corrected for gradient nonlinearities. The pial surfaces
were further refined using T2-weighted structural images and corrected
manually where necessary. PET–MR coregistration was estimated using
boundary-based registration (Greve and Fischl, 2009) between the time-
weighted sum of the PET time–activity curves (TACs) and the structural
MRI. Additionally, the transformation from individual MR space to nor-
mal MNI152 space was estimated with combined volume–surface (CVS)
registration (Postelnicu et al., 2009).

Regional TACs for the cortical regions were extracted by resampling
the TACs to the cortical surface (Greve and Fischl, 2009) and taking the
average within each of the 34 regions defined by the Desikan–Killiany

Table 1. Demographics of healthy subjects

Receptor/transporter 5-HTT 5-HT1AR 5-HT1BR 5-HT2AR 5-HT4R

Radioligand �11C�DASB �11C�CUMI-101 �11C�AZ10419369 �11C�Cimbi-36 �11C�SB207145
N 100 8 36 29 59
Gender (M/F) 29/71 3/5 24/12 15/14 41/18
Age (mean � SD) 25.1 � 5.8 28.4 � 8.8 27.8 � 6.9 22.6 � 2.7 25.9 � 5.3
BMI (kg/m 2, mean � SD) 23.2 � 2.9 22.7 � 2.6 24.9 � 4.3 23.4 � 2.4 23.5 � 3.3
Injected dose (MBq, mean � SD) 586.0 � 32.2 510.5 � 149.1 585.4 � 37.4 510.4 � 109.7 577.1 � 70.9
Injected mass (�g, mean � SD) 1.9 � 2.2 2.0 � 1.5 1.2 � 1.0 0.8 � 0.5 1.1 � 0.7
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cortical atlas (Desikan et al., 2006) automatically labeled by FreeSurfer.
Similarly, regional TACs for seven subcortical regions were obtained by
resampling the TACs to an MR-based refined version of the automatic
volume segmentation derived by FreeSurfer for each subjects as de-
scribed in Greve et al. (2016). In addition, a segmentation of cerebellum
including different lobules (e.g., vermis) were created using SUIT 2.7
(Diedrichsen, 2006) and SPM12 �http://www.fil.ion.ucl.ac.uk/spm�.
Gray matter cerebellar segmentations used as reference region were cre-
ated by limiting the FS segmentation to the intersection with the cerebel-
lum labeled by SUIT, excluding vermis; this has the effect of rem-
oving peripheral overlabeling sometimes present in the cerebellar
segmentations.

Due to the high binding of [ 11C]DASB and [ 11C]CUMI-101 within
dorsal and median raphe, these ROIs can be delineated directly on PET
images. Raphe TACs were obtained by delineating the ROIs on the time-
weighted summed TACs using anatomical landmarks from structural
MRI according to the method described in Beliveau et al. (2015) and
extracting the average TACs within these regions. For the other tracers,
raphe TACs were obtained by taking the average within normalized dor-
sal and median raphe templates. These templates were created by trans-
ferring the raphe ROIs previously derived to common space (MNI152)
using CVS and taking the voxels with the highest overlap with a target
volume of 150 mm 3 and 100 mm 3 for dorsal and median raphe, respec-
tively. The delineations and templates were transferred back to PET space
using CVS.

Subcortical voxelwise TACs in common volume space (MNI152) were
obtained using CVS. Cortical vertexwise TACs in common surface space
(fsaverage) were obtained using the cortical surface alignment estimated
by FreeSurfer (Fischl et al., 1999). Finally, cortical and subcortical TACs
were surface smoothed by 10 mm and volume smoothed by 5 mm full-
width at half-maximum, respectively.

Kinetic modeling. For all radioligands, modeling of the parametric and
regional nondisplaceable binding potential (BPND) was performed using the
FS PET pipeline (Greve et al., 2013) with a Multilinear Reference Tissue
Model 2 (MRTM2) (Ichise et al., 2003) using cerebellar gray matter, exclud-
ing vermis, as a reference region. The reference region washout rate (k2�) was
computed using MRTM (Ichise et al., 1996); the high-binding TAC was
obtained from a surface-weighted average of neocortical regions for
[11C]CUMI-101, [11C]AZ10419369, and [11C]Cimbi-36 and from a vol-
ume-weighted average of caudate and putamen for [11C]SB207145 and of
caudate, putamen, and thalamus for [11C]DASB. Parametric and regional
BPND were thresholded between 0 and 10 (outliers were set to the corre-
sponding threshold value) and average maps were created. For 5-HTT, the
TAC of the median raphe was found to be irreversible within the scan time,
so the BPND for this region is not reported and it was disregarded from
further analysis.

In vivo binding and autoradiography. To compare our results with
those of Varnäs et al. (2004) and Bonaventure et al. (2000), regional
values were adapted. First, the autoradiography data from Varnäs et al.
(2004) was averaged across layers for individual cortical regions and
divisions of subcortical structures were averaged to generate larger iden-
tifiable structures. Then, each region of the Desikan–Killiany cortical
atlas (both left and right independently) and each subcortical region were
grouped according to a set of regions common to the autoradiography
data. Regional BPND values were then averaged within group using a
volume/surface weighting. Regions where no reasonable pairing could be
made were disregarded. The association between BPND and autoradiog-
raphy was estimated using a linear regression without intercept because a
null density is expected to yield null binding and the estimated slopes

were used to transform BPND into density values. Pearson’s and Spear-
man’s correlation coefficients were also computed for all associations.
The Shapiro–Wilks test was used to assess the normality of the residuals
and the null hypothesis of normality was rejected for p � 0.1; whenever
the residuals did not pass the test, only the Spearman’s correlation coef-
ficient is reported. Densities in units of picomoles per gram of tissue were
converted to picomoles per milliliter using an approximate gray matter
density of 1.045 g/ml (DiResta et al., 1991).

A linear mixed-effect model was used to investigate the global effect of
age and gender on the regional density for the five 5-HT targets. The
model included age, gender, and the interaction between age and gender
as a fixed effect. Region-specific random effects were used to model
regional-specific densities and subject-specific random effects to account
for the correlation between the regional measurements of a given indi-
vidual. To handle different variability in 5-HT density between regions, a
separate variance parameter was estimated for each region. To investigate
a possible regional-specific effect of age or gender, a separate linear re-
gression was fitted to each region, including age, gender, and a possible
interaction between age and gender as covariates. In the global models,
the p-values were adjusted for multiple comparison over tracers (n 	 5)
controlling the false discovery at 5% (Benjamini and Hochberg, 1995).
Similarly, regional models were corrected for multiple comparisons over
regions (n 	 42). For the entire analysis, the significance threshold was
fixed at p � 0.05. Regional densities were averaged for left and right
hemispheres.

The BPND of small volume of interest surrounded by low binding
tissue can be drastically underestimated due to partial volume effects. As
described previously (Savli et al., 2012), this is particularly pronounced
in the raphe nuclei for the 5-HTT and 5-HT1AR because there is high
binding for the corresponding radioligand in this region, but much lower
levels in to neighboring white matter tissue of the brainstem. Accord-
ingly, the raphe nuclei density values reported here should be interpreted
with caution and, although they are depicted in Figures 1 and 5, this
region was excluded from any quantitative analysis for the 5-HTT and
the 5-HT1AR. Similarly, the 5-HTT BPND distribution within the globus
pallidus was found to be highly heterogeneous due to partial volume
effect from the caudate, so this region was also excluded from quantita-
tive analysis for the 5-HTT.

In vivo binding and mRNA levels. Regional binding values were com-
pared with 5-HT receptors and transporter mRNA normalized expres-
sion values from the Allen Human Brain Atlas (Hawrylycz et al., 2012).
The atlas contains probe information from six human brains. Each probe
is associated with mRNA levels (log2 intensity) for all genes sequenced,
an anatomical label, and coordinates in the MNI152 space, as well as
many other parameters. For more details on the materials and methods
for the Allen Human Brain Atlas, see the Microarray Survey Technical
White papers available at http://help.brain-map.org/display/human-
brain/Documentation. mRNA expression values for regions of the
Desikan–Killiany cortical atlas were obtained from the work of French
and Paus (2015). Each probe of the Allen Human Brain Atlas was paired
to a cortical region using its coordinates in the MNI152 space and re-
gional expression values were obtained by averaging expression values
across probes, finding the median per region, and finally finding the
median across subjects. We used the same approach to obtain subcortical
expression values, but probes were paired to subcortical regions directly
by their anatomical label rather than using their coordinates to identify
corresponding regions. Both binding values and mRNA values were av-
eraged between left and right hemispheres. As above, the association
between binding and mRNA was estimated using a linear regression and

Table 2. PET scanning and realignment parameters

Radioligand �11C�DASB �11C�CUMI-101 �11C�AZ10419369 �11C�Cimbi-36 �11C�SB207145

Scan time (min) 90 120 90 120 120
Frame lengths (number 
 sec) 6 
 10, 3 
 20, 6 
 30, 5 
 60,

5 
 120, 8 
 300, 3 
 600
6 
 5, 10 
 15, 4 
 30,

5 
 120, 5 
 300, 8 
 600
6 
 10, 6 
 20, 6 
 60,

8 
 120, 19 
 300
6 
 10, 6 
 20, 6 
 60,

8 
 120, 19 
 300
6 
 5, 10 
 15, 4 
 30,

5 
 120, 5 
 300, 8 
 600
Realigned frames (first:last) 10:36 10:38 13:45 13:45 10:38
Reference frame 26 26 27 27 26
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Pearson’s and Spearman’s correlation coefficients were also computed
for all association. Dorsal raphe was excluded from the regression for
5-HTT and 5-HT1AR and the regression was performed for cortical re-
gions only for the 5-HT2AR. For 5-HT1BR and 5-HT2AR, subcortical
regions exhibited patterns distinct from the cortical regions, so the anal-
ysis was stratified between cortical and subcortical regions for these two
targets.

Results
In vivo molecular imaging and autoradiography
Brain regional BPND values were compared with the correspond-
ing receptor density measurements from postmortem autora-
diography data from Varnäs et al. (2004) and Bonaventure et al.
(2000) (for 5-HT4R). Figure 1, A–E, shows the relation between
autoradiography receptor/transporter Bmax (density) from the
two studies and PET measures of BPND from the Cimbi database.
For all five targets, we found good to excellent associations be-
tween BPND and Bmax, with Pearson’s correlation coefficients
ranging from 0.88 to 0.97 and Spearman’s correlation coefficients
ranging from 0.72 to 0.97. For 5-HTT, the residuals for 5-HTT
did not pass the Shapiro–Wilks test for normality, so the Pear-
son’s correlation is not reported for that association. The slope
estimates of the regression were used to transform the BPND at-
lases into Bmax atlases (Figs. 2, ), allowing for a direct comparison
across targets. The regional densities are presented in Figure 4.
No global or regional significant effect of age, gender, or their
interaction was found.

Receptor density and mRNA
The associations between in vivo receptor density, obtained by
converting BPND into densities, and mRNA levels are shown in

Figure 5. For the 5-HT1AR, we found excellent correlation be-
tween the protein densities and mRNA levels, with Pearson’s and
Spearman’s correlation coefficients of 0.94 and of 0.94, respec-
tively. For 5-HT4, the residuals did not pass the Shapiro–Wilks
test for normality, but we found a moderate Spearman’s correla-
tion coefficient of 0.50. The 5-HT1BR and 5-HT2AR showed a
distinctly different pattern compared with other targets, with
good Pearson’s correlation coefficients (0.66 and 0.60, respec-
tively) and weak to moderate Spearman’s correlation coefficients
(0.28 and 0.46) in cortical regions, but there was no statistically
significant correlation in subcortical regions.

Discussion
Here, we present the first high-resolution PET- and MRI-based in
vivo human brain atlas of four 5-HT receptors and the trans-
porter. The atlas highlights key features of the 5-HT targets, their
spatial distribution, and abundance relative to each other. Be-
cause we identified high correlations with postmortem autora-
diography receptor measurements, the atlas could be calibrated
to represent absolute receptor or transporter densities, thus mak-
ing it independent of the PET methodology in terms of choice of
radiotracer and modeling approach. Access to such a high-
resolution atlas of the 5-HT system enables scientists not only to
evaluate the absolute densities of the individual targets, but also
the relative abundance of protein and in any brain region of
interest. However, a few caveats with this approach deserve to be
mentioned here. Whereas autoradiography provides a measure-
ment of the target density, PET returns an outcome measure that
is proportional to the density of the target available for radioli-
gand binding and the measure most notably depends on the in

Figure 1. Regional BPND and Bmax values for the five 5-HT targets: 5-HTT, 5-HT1AR, 5-HT1BR, 5-HT2AR, and 5-HT4R (A–E). The regions in the PET image space were combined to match the regions
used by Varnäs et al. (2004) and Bonaventure et al. (2000) in their autoradiography measurement. The regressions (fixed through 0.0) are shown as black, dashed lines and the Pearson’s (R) and
Spearman’s (S) correlation coefficients are reported. **p � 0.001. Dorsal raphe, median raphe, and globus pallidus for 5-HTT and dorsal raphe for 5-HT1AR were excluded from the regressions and
marked with � on the figure (see Materials and Methods).
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vivo radioligand affinity to the target. However, because the oc-
cupancy of endogenous 5-HT is low for most targets (Paterson et
al., 2010), it is unlikely that individual differences in endogenous
5-HT (and thereby in vivo affinity) would incur any bias.

Although PET imaging offers unique sensitivity and specific-
ity, the intrinsic image resolution of PET is lower than for MRI. A
prior brain 5-HT atlas has been reported based on PET scanners
with a resolution of 4.4 mm and was generated independently of
anatomical MRI (Savli et al., 2012). Leveraging high-resolution
structural MRI (�1 mm resolution) in combination with molec-
ular images acquired with a high-resolution PET scanner with a
resolution of 2 mm allows for precise segmentation of brain re-
gions and accurate intersubject normalization. The surface-based
approach used in this work has also been shown to lead to a
reduction in bias and variance of PET-derived measurements
(Greve et al., 2013). A main advantage of the surface-based
method is to diminish partial volume effects introduced by
smoothing in the volume; smoothing on the surface drastically
reduces the blurring of neighboring tissues with cortical gray
matter and blurring across adjacent gyri (Hagler et al., 2006).
Nevertheless, we still see subtle signs suggestive of partial volume
effects; for example, bands of lower binding along the medial wall

(Figure 6). Although a partial-volume-corrected atlas could be
generated, we chose not to do so because methods for partial
volume corrections come with their own set of limitations (Harri
et al., 2007) and can lead to different results depending on the
algorithm used (Greve et al., 2016).

Although [ 11C]Cimbi-36 has been shown to have some affin-
ity for 5-HT2C, these receptors are mostly limited to the choroid
plexus and the hippocampus. Furthermore, binding measures for
[ 11C]Cimbi-36 have been shown to be very strongly correlated to
those of the 5-HT2A antagonist radiotracer [ 18F]Altanserin
(Ettrup et al., 2016). Therefore, any bias caused by the contribu-
tion of 5-HT2C receptors is expected to have minimal impact on
the results presented here.

We compared our in vivo imaging atlases with meticulous
autoradiography studies of the relevant 5-HT targets in postmor-
tem human brain slices (Bonaventure et al., 2000; Varnäs et al.,
2004). The postmortem brains in Varnäs et al. (2004) and
Bonaventure et al. (2000) were retrieved from individuals older
than those included in our study, with a respective mean age of 58
and 55 versus 26 years in our cohort. Therefore, the atlas densities
represent those that can be observed in individuals matching
the mean age of the population in the autoradiography studies.

Figure 2. Average density (Bmax) maps for five 5-HT targets on the common FreeSurfer surface (left hemisphere; lateral view, upper and medial view, lower). Color scaling was individually
adjusted to highlight features of the distributions.

Figure 3. Average density (Bmax) maps for the five 5-HT targets in the common MNI152 space (coronal, upper, z 	8 mm and sagittal, lower, x 	3 mm). Color scaling was individually adjusted
to highlight features of the distributions.
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Figure 4. Density values (Bmax) of the five 5-HT targets in FreeSurfer defined brain regions. Median raphe is not reported for 5-HTT due the irreversible kinetic of the TACs (see Material and
Methods).
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Within the current cohort, we did not observe any significant
effect of age or gender within our data, most likely because of the
limited age range of the subjects. Whereas some 5-HT targets,
such as 5-HT1BR and 5-HT2AR, are relatively independent of age,
others have been shown to have a pronounced age-dependent
decline and/or sex differences (Moses-kolko et al., 2011; Nord et
al., 2014). Therefore, minor data adjustments may be necessary
when relating these atlases to specific research questions.

For all of the serotonergic targets, except for the 5-HT1AR
(Rizzo et al., 2014), we provide novel information about the re-
lationship between in vivo molecular imaging in humans and the
associated mRNA levels assessed in postmortem human brain

tissue. The relation between the cerebral 5-HT target densities
and their corresponding mRNA levels is of interest as mRNA
levels often do not correspond to their protein levels because
protein concentrations depend on the relative rates of transcrip-
tion, mRNA decay, translation, and protein degradation (Vogel
et al., 2010). Relating the two measures in brain space generates
important information about the gene–protein translation. A
high spatial correspondence between the two measures suggests
that the protein is located on or at least close to the cell body,
where the protein synthesis takes place. We found no significant
association between 5-HTT mRNA and 5-HTT density, al-
though, as expected, both were high in the dorsal raphe (Fig. 5A).

Figure 5. Regional density values (Bmax) and mRNA levels for the five 5-HT targets: 5-HTT, 5-HT1AR, 5-HT1BR, 5-HT2AR, and 5-HT4R (A–E). Subcortical data are shown in color and cortical data are
shown in black. The regression lines are shown as black dashed lines and the Pearson’s (R) and Spearman’s (S) correlation coefficients are reported. *p � 0.01; ** p � 0.001. In C and D, a line was
fitted to cortical regions (black) only. Dorsal raphe, median raphe, and globus pallidus for 5-HTT and dorsal raphe for 5-HT1AR were excluded from the regressions and marked with � on the figure
(see Material and Methods).

Figure 6. Average density (Bmax) maps for five 5-HT targets on the inflated common FreeSurfer surface (left hemisphere; lateral view, upper and medial view, lower).
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This is consistent with the exclusively presynaptic localization of
5-HTT and thus primary mRNA localization within raphe nuclei
(Hoffman et al., 1998) and 5-HTT protein being located on ter-
minal projections distant from 5-HT neurons (Zhou et al., 1998).
The 5-HTT mRNA levels were overall low, both relative to the
mRNA of other targets and to the 5-HTT protein density. Con-
sistent with Rizzo et al. (2014), we found a very strong association
between 5-HT1AR mRNA and 5-HT1AR protein density as deter-
mined with in vivo molecular neuroimaging (Fig. 5B). Rizzo et al.
(2014) ascribed the tight correlation to a more general feature of
the serotonergic system, but we show here that several other se-
rotonergic targets show profound regional differences. We found
a fair association between neocortical 5-HT1BR mRNA and
5-HT1BR density (Fig. 5C), but the subcortical regions did not
conform to this association. As for the latter, our findings are
consistent with a previous postmortem human brain study in
which proportionally higher levels of 5-HT1BR mRNA than pro-
tein were found, particularly in the ventral striatum, whereas the
pallidum, the brain region with the highest 5-HT1BR density, had
low mRNA levels (Varnäs et al., 2005). This supports the obser-
vation in rodents that 5-HT1BRs in pallidum are localized in
nerve terminals from striatal projections (Boschert et al., 1994)
that are of GABAergic origin (Ghavami et al., 1999). To the best
of our knowledge, existing literature does not provide evidence
about the relative densities of 5-HT1BR autoreceptors and hetero-
receptors in different brain regions, but, due to the specific
pattern observed here, we speculate that the 5-HT1BR he-
teroreceptors may be relatively more abundant in subcort-
ical regions. An interesting pattern of 5-HT2AR mRNA versus
5-HT2AR density emerged: whereas the neocortical brain regions
showed a good, linear correlation, there was no association be-
tween the two measures in subcortical brain regions (Fig. 5D) and
the neocortical and subcortical regions fall in two separate clus-
ters on the graph. This pattern is in agreement with observations
in the macaque monkey brain (López-Giménez et al., 2001) and
suggests that the regulation and role of the 5-HT2AR differ mark-
edly between neocortical and subcortical brain regions, possibly
because the 5-HT2AR in neocortex are located in the apical part of
pyramidal neurons (Jakab and Goldman-Rakic, 2000). In addi-
tion, the 5-HT2AR mRNA levels are almost twice as high com-
pared with the other investigated targets. We speculate that high
mRNA levels enable the system to regulate synaptic 5-HT2AR
levels quickly, consistent with the ligand-induced endocytosis
and recycling of 5-HT2AR (Raote et al., 2013). We observed a
moderate correlation association between 5-HT4R mRNA and
5-HT4R protein density (Fig. 5E). This finding is consistent with
data obtained in humans, where 5-HT4R mRNA levels and den-
sities where high in caudate, putamen, accumbens, and the hip-
pocampus formation and were both relatively lower in other
brain regions.

Conclusion
Here, we present a comprehensive PET- and MRI-based high-
resolution brain atlas of the serotonin system. By combining the
in vivo atlases with postmortem autoradiography measurements,
we calibrated the individual atlas to represent quantitative pro-
tein levels in terms of picomoles per milliliter. Furthermore, we
describe the relation between regional serotonergic target densi-
ties and their mRNA levels, some for the first time in humans.
The approach is generally applicable for any molecular target that
can be visualized in vivo by PET. Such publicly available in vivo
human brain atlases will serve as an important resource for
neuroscience.

Notes
Supplemental material for this article is available at https://nru.dk/FS5ht-atlas.
The surface and volume Bmax maps presented in Figures 2 and 3 and a table
containing regional Bmax values from Figure 4 can be downloaded at this site.
This material has not been peer reviewed.
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Abstract. Modern datasets are often multiway in nature and can
contain patterns common to a mode of the data (e.g. space, time,
and subjects). Multiway decomposition such as parallel factor analysis
(PARAFAC) take into account the intrinsic structure of the data, and
sparse versions of these methods improve interpretability of the results.
Here we propose a variational Bayesian parallel factor analysis (VB-
PARAFAC) model and an extension with sparse priors (SP-PARAFAC).
Notably, our formulation admits time and subject specific noise modeling
as well as subject specific offsets (i.e., mean values). We confirmed the
validity of the models through simulation and performed exploratory
analysis of positron emission tomography (PET) and functional mag-
netic resonance imaging (fMRI) data. Although more constrained, the
proposed models performed similarly to more flexible models in approx-
imating the PET data, which supports its robustness against noise. For
fMRI, both models correctly identified task-related components, but were
not able to segregate overlapping activations.

1 Introduction

One of the most widely used tool for dimensionality reduction of large datasets is
the Principal Component Analysis (PCA) [1], as well as its probabilistic formu-
lation (PPCA) [2]. PCA finds orthogonal components describing the directions
of maximum variance. Selecting the number of components to retain can be
problematic and usually requires a post-processing step if the number is not
known beforehand. Furthermore, even components explaining a large portion of
the variance can include small, non-informative weights making them difficult
to interpret. Sparse versions of the PCA algorithms deal with these issues by
pruning whole components or individual weights [3].

Neuroscience data are multi-modal in nature and although PCA can be per-
formed on data concatenated along one mode (e.g. time) to identify (e.g. spa-
tial) components common to another mode (e.g. subjects), this approach discards
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mode-specific information (e.g. subject specific scaling). Instead using a multiway
decomposition method, such as Parallel Factor Analysis (PARAFAC) also called
Canonical Decomposition or Canonical Polyadic Decomposition (CP) [4–6], main-
tains the intrinsic structure of the data while having substantially less degrees of
freedom and thereby being less sensitive to noise, given model assumptions are
met. Furthermore, the PARAFAC model is unique (up to scaling and permutation)
under mild conditions [7] providing a more interpretable representation, as com-
ponents cannot be arbitrarily rotated. Exploiting these properties, the PARAFAC
model has successfully been applied to the modeling of neuroimaging data such as
EEG and fMRI (for reviews see also [8–10]). Similar to PCA, the amount of small
non-informativeweights canminimized by inducing sparsity on individualweights.
A sparse PARAFAC based on least-squares optimization was discussed in [11].

Sparse multiway models have a high relevance in fields such as neuroscience.
The brain has been demonstrated to be organized in networks, and for some
specific tasks, e.g. motor tasks, distinct regions of the brain are active, hence a
spatially sparse pattern can be expected. When this type of task is performed
across multiple subjects it is possible to leverage the intrinsic structure of the
data by performing multiway decomposition.

In this paper, we develop a fully bayesian sparse probabilistic PARAFAC
(SP-PARAFAC) model with time-dependent and subject specific isotropic noise.
We show how a simple change to the sparsity prior allows for easy transition
between SP-PARAFAC and probabilistic PARAFAC (VB-PARAFAC). Approx-
imate solution are given based on variational Bayesian inference [12] and we
investigate the applicability of the models to PET and task-based fMRI data.
While probabilistic PARAFAC has previously been investigated (cf. [13–16])
none impose sparsity on individual elements nor model time-dependent noise.

2 Review of Probabilistic PCA

The initial formulation of probabilistic PCA [2] defines a model relating obser-
vations x to latent variables z projected on a K dimensional hyperplane W of
origin m with additive Gaussian noise ε, such that x = Wz + m + ε. Here,
the latent variable and the noise are assumed to follow an isotropic Gaussian:
z ∼ N (0, I) and ε ∼ N (0, τ−1I), where τ is the precision of the noise.

In subsequent work [17], the authors formulated a fully Bayesian treatment
of PCA solved through variational inference (VB-PCA) and with hierarchical
ARD priors P (W |α) over the columns of the matrix W , allowing for automatic
selection of the number of components. Here P (W |α) was defined to follow a
multivariate Gaussian specific to each column where α is defined as the precision:
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P (W |α) =
K∏

k

(αk
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where wk is the kth column of W . To complete the Bayesian specification, the
remaining parameters are associated with broad priors: m ∼ N (0, β−1I) and
τ ∼ Γ (aτ , bτ ).

The investigation of alternative priors on W by [3] lead to the a fully sparse
formulation of PCA (SP-PCA) where a sparsity inducing prior is imposed on
elements of W rather than columns. In theory this allows the model to identify
both the model order (true K) and disregard noisy or irrelevant voxels (features).
Among the different priors studied, Jeffrey’s prior was shown to give sparse
components with the highest cumulative explained variance. With Jeffrey’s prior,
the conditional distribution of P (W |α) and the prior on α becomes:
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(3)
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(4)

3 Probabilistic Parallel Factor Analysis

Multiway data can be viewed as a tensor structure. In this paper we are consid-
ering 3-way tensors of dimension V × T × S, where for ease of correspondence
with the PET and fMRI datasets V will be referred to as voxels, T as time and
S as subjects. Similar to PCA, the PARAFAC model seeks to identify a matrix
W of size V × K, for which the columns are common components across the S
subjects. In contrast to PCA the PARAFAC model allows for individual scaling
of the components, which can be used to characterize inter-subject variability
and it also accounts for subject specific temporal noise. A graphical model of
the proposed model is illustrated in Fig. 1. Each timepoint t for each subject s
is reconstructed by,

x
(s)
t = Wdiag(δ(s))zt + m(s) + ε

(s)
t (5)

where W and z are now common across subjects, but where we model time
dependent noise specific to each subject ε

(s)
t (with precision τ

(s)
t ), subject specific

mean m(s) and subject specific scaling of the components δ(s). Note that here
ε, m, δ and τ are matrices and ·(s) denotes the sth column. The likelihood of a
model with a given set of parameters is assess by,

P (X |W ,Z,m, τ , δ) =
S∏

s

T∏

t

N
(
x
(s)
t |Wdiag(δ(s))zt + m(s), τ

(s)−1

t IV

)
(6)
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Fig. 1. Graphical model for probabilistic PARAFAC.

To complete the Bayesian framework, prior distributions are defined for the
parameters:
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(7)
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)
(9)

P (Z) =
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t

N (zt|0, IK) (10)

The choice of priors for W and α determines the pruning and sparsity capa-
bility of the model. If the priors are chosen to be Eqs. (1) and (2) then VB-
PARAFAC is obtained. Which seeks to identify active and inactive components
using ARD. However, if the priors are chosen to be Eqs. (3) and (4) then Sparse
Probabilistic (SP-)PARAFAC is obtained. Seeking to identify both dimension-
ality (model order) and active voxels (features).

The general complexity of the VB- and SP-PCA and the proposed VB- and
SP-PARAFAC models differ. Notably, the PCA models with temporally con-
catenated data have KT (S − 1) more degrees of freedom for the latent variable
z compared to the PARAFAC models, which for a dataset with large T and K
could be a potential source of overfitting, whereas PARAFAC have KS more
parameters for δ and V (S − 1) more parameters for m.

4 Variational Inference

In order to maximize the likelihood function the marginal distribution P (X) =∫
P (X, θ)dθ must be estimated. However, the marginalization of this distribu-

tion with respect to the prior distributions is most often analytically intractable.
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Variational inference solves this problem by approximating the desired distrib-
ution with another distribution Q, called the variational distribution. The chal-
lenge in a variational approach is to choose a sufficiently simple distribution Q
so that the log marginal likelihood can be approximated by a tractable lower
bound L(Q) and at the same time is sufficiently flexible in order to make this
bound tight. A common choice for Q is a distribution which factorizes over the
model parameters such that Q =

∏
i Qi(θi). For the VB-PARAFAC model, the

distribution Qi(θi) were defined as follow:
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It can be shown that the log marginal probability is equivalent to lnP (X) =
L(Q) + KL(Q||P ), where KL is the Kullback-Leibler divergence. By fixing Qj

and maximizing L(Q) with respect to the remaining Qi�=j we obtain the general
expression ln Q∗

j = Ei�=j [ln p(X,θ)]+ const which minimizes the KL divergence.
By applying and normalizing this, the update rules for Q can be derived and
are shown in Eqs. 17 – 27. Note that wv denotes a row of W , 〈·〉 denotes the
expectation and that the operator • is the Hadamard product.
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By changing the prior on W to Jeffrey’s prior shown in Eq. 4 we
obtain the solution for SP-PARAFAC. The Qi distributions remain the
same except for Q(α) which now factorizes over elements, i.e. Q(α) =∏V

v

∏K
k Γ (αv,k|ãαv,k

, b̃αv,k
). These changes are reflected in the update rules for

W and α,
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The lower bound L(Q) can be easily derived to monitor the convergence of the
algorithm. Although convergence is guaranteed, the solution will not necessarily
arrive at a global maximum. This is typically addressed by running the algorithm
multiple times and keeping the solution with the largest lower bound.
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5 Results

In this section, we present a validation of our model with simulation and perform
the analysis of PET and fMRI data. The parameters β−1, aα, bα, aτ and bτ were
set to 10−3 to obtain broad priors. In all cases, W was initialized using PCA,
which in practice consistently lead to a higher lower bound compared to random
initialization and mitigated the need for multiple restarts in the case of VB- and
SP-PCA. For VB- and SP-PARAFAC, PCA was performed on the data from
individual subjects, hence the algorithm was restarted for each subject and the
solution with the highest lower bound was kept. To assess stability of the solution
across model initializations the RV coefficient [18] between the estimated W for
two different initializations was calculated. This was done for all unique pairwise
combinations, (#repeats−1)!, and the average RV coefficient is reported. The RV
coefficient is a multivariate generalization of the Pearson correlation coefficient
which measure subspace overlap and is invariant to rotation and translation. The
RV coefficient is one if the subspaces overlap completely and zero if they have no
overlap. Similarly, we also computed an average correlation: first, for each pair
of estimated W , components were matched based on correlation and an average
correlation computed. Then, the average of all unique pairs was computed.

Results were also compared to solutions obtained with the PARAFAC func-
tion from the N-way toolbox 3.21 [19], which evaluates the standard PARAFAC
model without modeling of the mean or the noise. As PARAFAC does not model
the mean, the data was centered when using this algorithm. Due to memory
limitation, the PCA initialization for N-way PARAFAC did not work for large
datasets, hence we used the default initialization as it consistently resulted in
lower reconstruction error compared to random initialization. Furthermore, the
number of components was determined by performing the decomposition for a
range of varying number of components and keeping the solution with the most
components and a core-consistency of a 100.

5.1 Simulation

This section presents a comparison between VB-PCA [17], SP-PCA [3],
PARAFAC [20] and the proposed VB-PARAFAC and SP-PARAFAC through
simulation. We created a 3-way dataset using the following procedure. Three
sparse vectors of length V = 10 were created and concatenated to form matrix
W ; this is shown in Fig. 2 as ground truth. Then random latent variables zt

of length T = 100, random mean values m(s) and random scaling factors δ(s)

for S = 5 subjects were sampled from the distribution N (0, I) and linearly
mixed according to Eq. 5. The additive noise was sampled from N (0, τ

(s)
t I),

with the precision τ
(s)
t sampled from Γ (1, 1). The resulting data was concate-

nated along the time dimension for the PCA algorithms and as a 3-way tensor
for the PARAFAC models.

Figure 2 shows the components identified by the algorithms. All models iden-
tified the ground truth components to varying degrees of accuracy and pruned
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Fig. 2. Hinton diagram of W identified by the algorithms (green is positive and red is
negative). Average RV and Pearson’s correlation coefficients between the ground truth
W and the identified solutions are reported. (Color figure online)

non-informative components. Both PCA models were more confounded by noise
and their inability to account for subject specific means compared to their
PARAFAC counter parts. Furthermore, SP-PCA and SP-PARAFAC performed
better than their VB version at pruning individual non-related weights, although
this is not reflected by the RV coefficient. These results indicate that the VB-
and SP-PARAFAC models benefit by having PARAFAC structure and by mod-
eling time and subject varying noise as well as subject specific means when these
effects are present in the data and that fully sparse priors are more efficient at
identifying sparsity structure from the data compared to priors inducing sparsity
on whole components.

5.2 Positron Emission Tomography

Here we performed an exploratory data decomposition of PET data. The syn-
chronized nature of PET experiments, the time-depend noise associated with the
radioactive isotope decay and subject specific scaling of the time-activity curves
(TAC) due to variation in injected dose and body weight make multiway model
in theory well suited for the analysis of PET data.

The PET data for the radioligand [11C]CUMI-101 and matching T1-weighted
structural magnetic resonance images (MRI) were obtained from the Cimbi
database [21] for 4 healthy subjects. Dynamic PET images (34 frames; 2× 5 s,
10× 15 s, 4 × 30 s, 5 × 120 s, 5× 300 s, 8× 600 s) were acquired on a HRRT scan-
ner with approximate in-plane resolution of 2 mm and the structural images
were acquired on a 3T Siemens Trio scanner at 1 mm isotropic resolution. The
structural images were processed within FreeSurfer [22]. PET images were coreg-
istered to the structural MRI [23], transferred to a common space (MNI152)
and smoothed using a 5 mm FWHM 3d Gaussian kernel. The data was finally
concatenated along subjects, forming a 3-way tensor, and processed with VB-
PARAFAC and SP-PARAFAC with an initial dimensionality of 30.

VB-PCA, VB-PARAFAC and SP-PARAFAC identified 7, 24 and 19 non-
null components, respectively; SP-PCA did not prune any component. Only two
components were commonly identified by all five methods. The first one loaded
on all brain space (Fig. 3A), whereas the second loaded on regions of high and
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Fig. 3. All algorithms identified at least two similar components, one weighted over the
whole brain (A) and one distributed over high and low binding regions (B). Correspond-
ing components for VB-PCA, SP-PCA and PARAFAC are not shown, but exhibited
similar patterns. All other components displayed random patterns with no underlying
anatomical correspondence. The average RV and Pearson’s correlation coefficients for
VB- and SP-PARAFAC were (0.5302, 0.5655) and (0.2635, 0.2752).

low binding regions with corresponding weights (Fig. 3B). The others exhibited
random patterns across the whole brain and adjusted for small, random variation
in the data. There was no component which loaded uniquely on specific brain
regions indicating that a set of basis function common to all brain voxel is the
more appropriate model. This results is reasonable as the kinetic across all brain
voxels is highly similar compared to other modalities, e.g. fMRI. Consequently,
although both VB- and SP-PARAFAC algorithms pruned non-informative com-
ponents, the SP-PARAFAC model introduced seemingly random spatial spar-
sity which left the components difficult to interpret. Although sparsity is often
a desired property, this result indicate that a fully sparse model may not always
be appropriate for the identification of global patterns.

Fig. 4. TACs from individual voxels of selected brain regions and their approximation.

Another interesting application of data decomposition methods applied to
PET imaging is the denoising of the data. We compared the approximation
performed by the different algorithms and the results were surprisingly similar
for all brain regions (see Fig. 4). These results indicate that our constrained
PARAFAC models is able to identify noise structure comparable to what a more
flexible model like VB and SP-PCA can discover and performed similarly well
in approximating the underlying data.
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5.3 Functional MRI

The analysis of multiway fMRI data is routinely performed using independent
component analysis (ICA) [24]. One of the most common model used to perform
ICA decomposition of fMRI data is the probabilistic ICA (PICA) [25] and its
tensorial extension for multi-subject analysis. We here aim to demonstrate a
side-by-side comparison of the components identified by tensor PICA and the
other five methods.

Eight healthy right-handed subjects performed a visually cued reaction fist-
closure fMRI task. Subjects performed 10 blocks of a duration of 10 sec, inter-
leaved with 10 sec rest, were they were instructed with a visual cue to open and
close their right or left hand at a frequency of approximately 1 Hz; the pattern
of left and right blocks was random but fixed across subjects. This task leads to
significant activation of the visual, motor and premotor cortex on the contralat-
eral side of the movement, and relatively weaker activation on the ipsilateral
side. For each subject, 210 axial echo-planar volumes (TE = 30 ms, TR = 2.25
s, 64 × 64 × 32 voxels at 3.6 × 3.6 × 3.8 mm) were acquired on a 3-T Siemens
Prisma together with a T1-weighted anatomical image at 1 mm isotropic res-
olution. The fMRI was motion corrected (MCFLIRT [26]), coregistered to the
structural image using (FLIRT [26]), transformed to common MNI152 space
(FNIRT [20]) and finally smoothed using a 8 mm FWHM 3d Gaussian kernel.
The fMRI data was finally processed using tensor PICA in Melodic [25] and the
five methods. VB-PARAFAC and SP-PARAFAC had an initial dimensionality
of 50. Significance maps were estimated as in [25] by creating Z-scores maps
by dividing each components by the residual voxel variance and modeling the
associated histograms using a Gaussian/Gamma mixture modeling approach in
Melodic.

For PICA, the estimated dimensionality was 47. No component was com-
pletely pruned by VB-PARAFAC, whereas SP-PARAFAC identified only 4 com-
ponents. The components identified by all the models corresponding to motor or
visual activation are presented in Fig. 5. The different functional aspect of the
task are clearly segregated in the components identified by PICA; component
1 is has strong visual activation (but also contains weaker motor activation),
where as components 2 and 3 have strong motor activation corresponding to left
and right fist-closure, respectively. For the other methods, all relevant compo-
nents contained both motor and visual activation, however the significance was
relatively lower. This is surprising as we would have expected that by enforcing
spatial sparsity and modeling time-dependent noise, which is particularly prob-
lematic in fMRI (e.g. physiological artifacts, motion), the identifiability of the
signal would have improved. As the activation of the visual and motor areas
are synchronized in this task, the visual and motor cortex exhibit similar, but
non identical, temporal profile which may be difficult to isolate given our model
assumptions. Furthermore, this task also illicits both contralateral and (weaker)
ipsilateral activation of the motor and premotor cortex, hence left and right hand
squeeze will have overlapping activation which may be difficult to segregate in a
sparse model. The SP-PCA and the PARAFAC model clearly underperformed in
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Fig. 5. Motor and visual components (columns) identified by the six methods. The
axial slice for the motor and visual views correspond respectively to Z = 55.75 mm and
Z = −10.50 mm in MNI152 space. The average RV and Pearson’s correlation coefficients
for VB- and SP-PARAFAC were (0.9130, 0.6815) and (0.5633, 0.5965).

identifying the motor and visual components. Interestingly, the SP-PARAFAC
model was able to prune most of the non task-related components and estab-
lished a model dimensionality much closer to what is expected from the task
compared to the other models.

6 Summary

In this work we presented a VB-PARAFAC model with time-dependent model-
ing of the noise and a fully sparse extension, the SP-PARAFAC model. We val-
idated these models and compared them to VB-PCA, SP-PCA and PARAFAC
through simulation and applied them to PET and task-based fMRI data. For
PET, the models identified two common components and performed equally well
at approximating the data. The spatial sparsity enforced by SP-PCA and SP-
PARAFAC appeared unfortunately random, rendering the components difficult
to interpret. We also compared the models to tensor PICA in the identification
of task-related fMRI components. Tensor PICA identified functionally segre-
gated motor and visual components where as the other models only identified
components with both motor and visual activation and with lower significance.
However, the dimensionality of the SP-PARAFAC model was much closer to
the what expected given the task, suggesting that this model performs bet-
ter at pruning non task-related components. Although we solely investigated
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neuroimaging modalities in this report, these models have a strong relevance for
other types of data for which PARAFAC is commonly used.
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