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1 Introduction 
Kinetics deals with the relation between time and matter. Whereas time is understood in chronometric 

terms, matter may encompass physical compounds (mole/L, No. of molecules, mL, etc.), electrical 

charges (coulomb, No. of positive, negative neutral charges), energy (joule), etc. The aim of this 

compendium is to review kinetics in order to describe mathematically and physically the transport, 

exchange, metabolism, and excretion of solutes and liquids. This occurs in and between organs, 

physiological compartments, or entire organisms. Kinetics is necessary for the understanding of 

normal physiological processes and is used to quantify these.  

The mathematical terms and models applied in kinetics exist in parallel in systems other than the 

human organism. This manual, however, will deal with only two different classes of kinetics: non-

linear and linear models. 

 

A parent compound in the human organism is transported across biological membranes, diffuses, and 

is transported with the blood flow, eventually metabolised, and finally excreted from the organism. In 

most cases, it is not possible to conduct sufficiently precise and specific experiments involving a 

parent compound. In a number of experimental conditions exogenously added parent compounds will 

change the system to be measured. For example, infusion of insulin reduces blood glucose in attempts 

to study the kinetics of insulin. The key concept of a tracer is a substance, which is a small amount of 

a specific compound that is somehow labelled yet still behaves identically with the parent compound 

(tracee). In some cases, the tracer will be chemically and physically completely identical with the 

parent compound except for a single stable atom in the parent compound that is replaced by a 

corresponding radioactive atom or stable isotope. In other cases, the tracer will be identical with the 

parent compound, except that it contains a different radioactive-labelled compound. Most important, 

the tracer must have the same kinetic properties as the parent compound. Although in some cases this 

may be difficult to achieve in a strict sense, this is often quite well approximated.  

 

In other settings, an indicator is used instead of a tracer. An indicator compound only needs to follow 

kinetically the compound or system of interest. Examples of such indicators are heat/cold, dyes, 

carbon monoxide, or inulin. Other indicators would include contrast agents, such as Gd DTPA. 

Although radioactive tracers have dominated the field, stable isotope, dyes, and other compounds 

useful for transduction of a signal are continually emerging.  

Use the "Insert Citation" button to add citations to this document. 
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Historically, kinetics was developed after the era of thermodynamic and physical principles 

formulated in the beginning of the 20th century when the discovery of radioactive isotopes had a 

significant impact on biomedical science. George de Hevesy is considered to be the founder of tracer 

dynamics. The basic terms in kinetics are formed by the application of classical mathematics with 

differential equations, integration, logarithmic and exponential functions, and Fourier and Laplace 

transformations. Today powerful computers permit iterative procedures and numerical solutions that 

were not previously possible; complicated kinetic models and processes can now be imaged 

parametrically. Many biological systems are well described with differential equations and iterative 

processes whereby deterministic chaos with non-linear and non-stationary biological systems arise. 

This is an approach additional to classical kinetics, where the linearity is a characteristic feature. The 

assumption of system linearity, i.e., proportionality between input and output, has facilitated the 

establishment of simple use of kinetics. A consequence of linearity is that the system variables do not 

depend on the amount of tracer and indicator. Another basic principle is the system stationarity, which 

assumes that the biological system is stable within the measurement period. That is, repeated similar 

inputs will lead to identical outputs. 

 

Biological systems are exceedingly complex. Their functions involve many subprocesses and a 

complete description of all processes involved or even just parts of them, down to the cellular level is 

not possible. To create a model of a biological system the different components must be considered, 

starting with a simplified model that is successively expanded. Often there is a trade-off between 

model accuracy and model complexity.  

 

A kinetic description of biological phenomena requires at least four steps: 1) description of the 

biological problem; 2) registration of the associated models with a mathematical and numerical 

description of the problem; 3) solution of the mathematical/numerical problem (differential equation, 

integration, iteration, etc.); and 4) translation of the mathematical/numerical-kinetic solution into a 

biological meaningful explanation. 

 

The entire process requires a combination of several disciplines, which must be carefully balanced. 

 

This manual in basic tracer kinetics serves to illustrate commonly seen kinetic problems in relation to 

perfusion, organ function, and metabolism. Mathematical terms are invariably included. It is 

impossible to describe kinetics, even at a very basic level without the involvement of some 

mathematics. 
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2 Kinetic models 
The two main types of linear kinetic design are compartmental models (or multi-compartmental) and 

non-compartmental (black box) models 1,3,13,17. The models are stationary when it can be assumed that 

the parameters in the system do not change with time.  With mathematical equations and computer 

programmes to fit the experimental data, highly sophisticated models can be built. This survey will 

not address all the different models, their qualifications, limitations, advantages, and defects in detail. 

Instead, the most important basic concepts will be examined with special reference to a series of 

biological problems. The survey also covers some clinically relevant examples.  It is not the intention 

to go into details of the mathematical aspects, but the widespread use of exponential methods for both 

compartmental and non-compartmental problems justifies the application of some formulas. In 

practice exponential fitting is not difficult and utilisation of standard computer programmes has made 

this and other methods very popular. These procedures should often solely be reserved as practical 

tools for the description of curves and not necessarily to confirm some kinetic model or another 2,3.   

 

2.1 Compartment Models 

The principal behind compartment modelling is to describe a system by a certain number of rooms 

(pools), which are interconnected through exchange of substance. This approach requires a 

simplification of the processes studied.  But the model chosen must be directly analogous to the 

particular biological system to be studied. A lack of or insufficient knowledge of the physiology of the 

system can mean that a wrong model is chosen (e.g. wrong number of compartments), which 

obviously can lead to larger or smaller fallacies2,3,5. 

One compartment (or pool) defines an area where a substance is homogenously distributed and in 

equilibrium, which means that the concentration of the considered substance is identical throughout 

the entire compartment at any time. This need not be one physical area – one physical area can consist 

of more compartments, where each describes a condition, e.g. two different chemical compounds of 

the tracer considered.  

In a multi-compartmental model two or more compartments are interconnected, so that there is an 

exchange of substance between some or all of these compartments (see Figure 2-1). Exchange of 

substance can be indicators or mother-substances, which cross physiological barriers (e.g. membrane 

transport or blood transport) or a chemical transformation (e.g. metabolism).  
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There are two main types of compartmental models: mammillary consisting of a central compartment, 

which is connected to peripheral compartments, and a catenary model, where all compartments are 

arranged in a series with each compartment connected to its neighbour. A compartment is open if it is 

connected to the surroundings and closed if it is not. Compartment models of biological systems 

usually have one open compartment.  

 

The mathematical aspects of compartment models normally involve writing up mass balances for 

certain kinetic structures, followed by quantification of the model from experimental data. The 

application of a physiological system involves some assumptions of which two important ones are 

Figure 2-1: Kinetic compartmental models. The mammillary system consists of a central 
compartment (central pool, CP), connected to peripheral compartments, which are not 
connected to each other. The catenary system consists of compartments in a series. 
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linearity and stationarity. Linearity or the principal of superposition means that the response from 

several stimuli is the sum of the separate stimulus responses. Stationarity means that all system 

parameters are constant over time. Stationarity implies that the same stimuli to the system produce the 

same response at all times.  

The rate constant or the transport constant (k) is the fraction of the content in a compartment, which is 

transported to another compartment per unit of time. The distribution volume (VD) is the equivalent 

volume in which a substance would be distributed with a reference concentration (often the plasma 

concentration), but it is far from always a true biological volume.  

 

The substance in a compartment is per definition homogenously distributed which means that a 

compartment model can be a good approximation if the mixing speed inside each compartment is fast 

compared to transport between the compartments. If this is not true the compartment model is a poor 

approximation. Compartments with concentrations, which are always in a steady state relationship, 

can be impossible to separate. A common and practical approximation is to combine them into a 

single compartment (”lumped pools”), on account of the further analysis, but it cannot always be 

assumed that lumped pools have physiological meaning. Hence, compartmental structures may be 

seriously restricted by the available data, but if the model is built sensibly and interpreted with care it 

need not be a practical restriction.  

 

Multi-exponential solutions to multi-compartmental models involve determination of the values of the 

time constants and distribution volume, which in some way best suits the experimental data. This is 

typically done by minimising the calculated error between data and the model function (least squares 

method or similar). By influencing the system with a known indicator the parameters of the model can 

be derived with the help of the measured response (an input-output or a residual measurement 

experiment). Some time constants or compartments may occassionaly be determined from 

independent experiments; for instance, by going through subsystems, other test materials, or from 

measurements on an analogous system.  

 

One example of a resolution of a multi-compartmental model is set out below. Figure 2-2 illustrates a 

bicompartmental model. The rate constants k1 and k2 [min-1] describe the fraction of the current 

substance, which is transferred from compartment 1 to compartment 2, per time unit, and vice versa. 

The rate constant k3 describes all irreversible loss and metabolic degradation of the substance. In the 

present model this takes place from compartment 2. Q0 is the amount of test substance present in 

compartments 1 and 2 at time 0 (i.e. Q1(0)=Q0  and Q2(0)=0). 
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Assuming linearity and stationarity, the following differential equations based on the principle of 

mass preservation can be written down.3 
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where 
1Qd is the change in indicator in compartment 1 and dtk2 is the fraction of indicator, which 

goes from compartment 2 to 1 in the course of a small time interval dt. 

The above can be rewritten to the following system of differential equations (see appendix 1): 
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The concentration in compartment 1 is C1=Q1/V1 and similarly the concentration in compartment 2 is 

C2 = Q2/V2, where V1 and V2 are volumes of compartment 1 (often the volume of plasma) and 

compartment 2, respectively. The physical variables and constants, Q1, Q2, k1, k2, k3, V1 and V2, are 

uniquely identifiable from concentration measurements in compartment 1. The solution to the 

differential equations is for Q1 a biexponential function as described below.  

In a system with n compartments the concentration-time curve from the first compartment can be 

described with a sum of exponential functions:  

 

            Compartment 1          Compartment 2 

 

Figure 2-2: A two-compartment model with a central pool (compartment 1) and a “lumped” peripheral pool 
(compartment 2). Qi, Ci and Vi are the masses, concentration and volume, respectively. ki is the time 
constant. 
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A range of connections between model parameters and some fundamental kinetic and mathematical 

terms are summed up in box 1. 

 

In the case of multi-exponential functions of a higher order than two the solutions become much more 

complex. If, for example, irreversible disappearance also occurs from compartment 1 (besides that 

which disappears from compartment 2) a fourth time constant (k4) must be included in the differential 

equations. Not all system parameters are then uniquely identifiable from the concentration–time 

relation in compartment 1 alone. Other details (e.g. collected disappearance from the organism, size of 

the distribution volume, concentration–time relation in compartment 2, etc.) must be available in 

order to determine the parameters of the system. 

 

The number of exponential terms (n), which can be fitted to a set of data exactly and meaningfully,  
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is one of the most limiting factors when determining the order of the compartmental model (n, i.e. the 

number of compartments) especially when only one compartment is available for measurements. The 

reasons for this are both mathematical and statistical. The value n is rarely bigger than 3 or 4 for 

single input-output models. This means that system compartments, which cannot be measured directly 

are  often described as the joining of compartments with more or less identical kinetic characteristics 

(e.g. proportional concentrations) in relation to the compartments measured.  
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The volumes V1 and V = V1 + V2 and the time constants k1, k2, and k3 thus only depend on A1, A2, b1, 

and b2 and these can be determined by fitting the concentration curve from compartment 1 to the 

parameters in the biexponential function, either manually with the help of logarithm paper or 

automatically with a computer programme3. 
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2.1.1 Example of a compartment model – uptake of 99mTc-pertechnetate in   

the thyroid gland 

Pertechnetate is, like iodie, absorbed in the thyroid gland, but does not participate in the formation of 

thyroid hormones. 

 

The kinetics can be described as a three-compartment model (model and data are from Hays MT 

1979140) consisting of plasma and two compartments in the thyroid, which is assumed to represent the 

follicular cells and a colloidal phase, respectively.  

 

 

 

 

 

 

 

 

 

Serial plasma tests are measured in a gamma counter and counts above the thyroid gland are measured 

with a gamma camera or single detector, either as a dynamic uptake or as a series of static uptakes 

over a period of time. In order to get comparable measured values, a standard is counted in the gamma 

counter and on the gamma camera/single detector, which is a test with the same radioactive 

concentration as the one injected into the subject.   

 

One can set up a mathematical expression for the compartment model, similar to the one shown 

above, but in practice numerical methods are more usual, they are comparatively simpler to use on a 

computer. Some programmes allow the compartment model to be drawn direct, as in Figure 2-1 (e.g. 

SAAM II, a commercial programme – see http://depts.washington.edu/saam2/), others describe the 

differential equations for the system. Like a range of other programmes, SAAM II simulate kinetic 

systems, which can be emloyed when the behaviour of a system has to be investigated with different 

inputs and model descriptions. JSIM (can be downloaded free of charge from 

http://nsr.bioeng.washington.edu/PLN/Software) is a programme able to simulate very complex 

systems. The relatively simple model for thyroid is shown below in Figure 2-4. When the simulation 

Figure 2-3: Compartment model of pertechnetate absorption in the thyroid gland. 
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is run it allows visualization of the time activity curves for the individual compartments or, as shown 

in Figure 2-5, the collected concentration in the thyroid gland. 

 

math Thyroid { 

 // define the time axis: 

 realDomain t;  

 t.min=0; t.max=10; t.delta=0.1; 

 

 // define input and concentrations in the compartments: 

 extern real Cin(t); 

 real p(t), f(t), k(t), thyr(t); 

 

 // transport constants in ml/min: 

 real k12=4.1, k21=0.28, k23=0.0070, k32=0.28;  

 

           // define initial conditions: 

 when (t=t.min) p=Cin; 

 when (t=t.min) f=0; 

           when (t=t.min) k=0; 

 

 // differential equations: 

 p:t = k12*f-k21*p+Cin; 

 f:t = k21*p+k32*f-(k23+k12)*k; 

 k:t=k23*f-k32*k; 

           //thyroid= follicular colloidal: 

           thyr=f+k;  

} 

 

 

Figure 2-4: Compartment model of the pertechnetate uptake in the thyroid gland. Described in the 

JSIM format.  
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2.2 Non-compartmental models 

The basic non-compartmental model ("black box") is illustrated in Figure 2-6. The most common 

model consists of a central pool connected with a certain number of peripheral pools. The inflow 

arrow represents the sum of all de novo “inflow” of substances into the central pool. Similarly, the 

outflow arrow represents the sum of irreversible removal of substance from the central pool, i.e. 

metabolism, elimination, degradation, loss to the surroundings, etc., from the system. This means that 

systems with a definitive structure are also fundamental for non-compartmental models1,13. Non-

compartmental analysis is not independent of a model, as it sometimes wrongly has been suggested in 

the literature. Inflow, outflow, “sinks”, recirculation, sampling, etc., are all explicitly connected to a 

(central) pool.  The flow to the central pool is equivalent to inflows, which reflect all inflows that 

reach the central pool directly or indirectly: e.g. hormones generated from initial stages in peripheral 

tissue (indirect sources). “Sinks” can also appear at other places in the system, e.g. hormonal 

degradation in the tissues (indirect sinks).    

 

Figure 2-5: Simulation of the compartment model; graph of the concentration of pertechnetate in 
thyroid tissue after an intravenous bolus injection. 
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The greatest conceptual advantage of a non-compartmental model is that an arbitrary amount of 

recirculation or exchanges can occur with an arbitrary amount of non-central pools none of which 

need necessarily to be identified with known physiological structures. Conversely the multi-

compartmental models demand more specific structures. Moreover, kinetic data can often be 

mathematically analysed with integral equations to a higher extent than with differential equations, 

which, in some settings, can be an advantage.  

 

Non-compartmental analysis is usually employed to estimate whole body variables in steady state, 

plasma clearance (Cl), distribution space (VD), total body-pool size, whole body mean transit time 

( t ), fractional clearance rates (FCR), metabolic clearance rate (MCR), (see the following section 

about whole body degradation). For determination of the above kinetic variables in non-

compartmental analysis, the substance to be studied must be eliminated from the central pool into 

which the indicator is introduced and measured (e.g. intravenous injection and blood sampling). This 

means that no or relatively little disappearance can occur in or from non-central (e.g. extra vascular) 

pools. This condition may be difficult to meet for a range of physiological, interesting substances, 

which is metabolised intracellularly (e.g. hormones and neurotransmitters). In practice, the condition 

can be approximately met for example in those coincidences where the transcapillary exchange speed 

is fast compared to the collected distribution times. The degree of approximation depends both on the 

quantitative and on the structural relations in the system. Another condition relating to non-

compartmental models is that all transport routes for the substance studied must go through the central 

pool, i.e. the same pool as the one where the indicator is introduced.  

 

Figure 2-6: Non-compartmental (”black box”) model with a central pool, inflow, outflow, and 
recirculation into and from non-central pools. 
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In short, non-compartmental models may provide a precise determination of kinetic variables for 

systems where all inflows and “sinks” are directly connected with (and only with) the central pool, 

where the measurements are made. However, plasma clearance can also be measured exactly, when 

non-central “sinks” are present, if only one “source” leads directly to the central pool. If these 

conditions are not forthcoming Cl, MCR, VD, and the total pool size will often be underestimated and 

the FCR will be overestimated in the non-compartmental analysis. 
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3 Basic kinetic methods and concepts 

In the 1870s Adolph Fick put forth his two diffusion laws. Fick’s first law describes the relation 

between concentration, diffusive transport of substance, and lapse of time at diffusion, i.e. transport 

conditioned by concentration differences10. Fick’s second law also involves the direction of the 

transport (spatial spread), besides the concentration, transport, and time. Fick’s principle, on the other 

hand, does not concern diffusion, but describes the relation between convective and non-convective 

transport of substance from the principle of mass preservation.  

 

In the 1890s Ernest Starling described the filtrative transport over the capillary membrane with lymph 

development conditioned by the balance between hydrostatic and colloid osmotic (oncotic) pressure. 

Around 1915 August Krogh discovered the recruitment of capillaries as he found largely unchanged 

capillary mean transit time in spite of massive flow increase in skeletal musculature during work, –

finding that was rewarded with the Nobel Prize in Physiology or Medicine. Prior to this George N. 

Stuart had described the principle of constant infusion and succeeding concentration measurement for 

flow determination. Valdemar Henriques described indicator dilution for measurement of blood flow 

in 1913 and later Hamilton reported plasma volume measurement. In the 1920s and 1930s Poul 

Brandt Rehberg, Eggert Møller, Donald Van Slyke, and Homer Smith 98, 99 introduced the clearance 

concept especially with relation to measurement of kidney function.  

Subsequently general use of the clearance concept was increasingly applied. In the 1940s and ‘50s 

Poul W. Kruhøffer published kinetic studies on the spaces of the organism, and Stanley Bradley 

performed transit time determination by single injection and inflow/outflow monitoring, and thus 

could estimate the size of the splanchnic blood volume. At the same time Kety and Schmidt100 

described transit time measurement and measurement of brain perfusion by applying diffusible inert 

gases and inflow/outflow monitoring. In the 1950s and ‘60s Niels A. Lassen and David Ingvar 

described residual detection by applying inert diffusible radioactive gasses (133 Xe, 85Kr) for flow 

measurement, especially in the brain129. Bertil Nosslin90 and Reeve and Bailey89 described the 

distribution kinetics of albumin from both multi-compartmental and black box models.  Kenneth L. 

Zierler introduced the height over area method in 1965. In the 1960s Per Sejersen described extraction 

estimation after a single injection and residual detection10, 100. Eugen M. Renkin, Christian Crone, 

Francis Chinard, and Carl Goresky developed models to describe substance exchange between 

capillaries and the surrounding tissue from assumptions of flow, inflow concentration, outflow 

concentration, and the insertion of a transcapillary transport limitation10. These are functions of both 

the capillary condition and the size of the capillary wall surface area (the so-called permeability-
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surface area product, PS). Computer based models were developed in the 1970s and ‘80s, where 

partly iteration and partly differential equations with different initial situations were studied. This led 

to the development of a range of “chaotic” models, which in some settings demonstrated linearity and 

in others “deterministic chaos”. From the 1990s kinetics was characterised by a combination of 

complex models and the use of major computer power122-125, where the possibility of forming 

functional pictures and “molecular image formation” was exploited.119-132 

 

3.1 Flow, flux, and perfusion – indicator dilution method  

Flux (J), which is measured in units of amount of substance per time unit (e.g. mmol/min), is a 

measure for particle transport velocity, i.e. number of particles, which pass a real or imagined surface 

in a short time interval.    

Flow (F) is similarly volume transport per time unit (e.g. ml/min). The perfusion (actually the 

perfusions coefficient), f, of a tissue area is defined as F/W, where F is the flow through the tissue and 

W is the weight of the tissue, and it is often stated in ml/min per 100g of tissue.  

 

From the principle of mass preservation one can derive the following connection: 

Flux [mmol/min] = flow [ml/min] · concentration [mmol/ml],  

which will be exploited in the following sections. 

In box 2 an example of flow indicators is shown. 
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Box 1. Examples of flow indicators 

 

3.1.1  Measuring the time-activity curves 

In principle there are three ways (direct or indirect) of measuring the time elapse for an indicator 

concentration in tissue: outflow detection, cumulated outflow detection and residual detection. For 

outflow detection the concentration is measured as a function of time at the outflow place from an 

organ or tissue area, e.g. when collecting blood samples with appropriate time intervals, perhaps with 

an automatic sampler. Cumulated outflow detection is a measurement at one spot where there is 

inflow of indicator but where there is no outflow, and the concentration is measured rapidly as a 

function of time. Residual detection is measured as residue (rest amount) in an organ as a function of 

time typically with a gamma camera or another detector placed over the organ.  

Residual detection can also be done by measuring the difference between inflow and outflow 

detection, which is exploited in the determination of perfusion. An example of an experimental setup 

is shown in Figure 3-7. 
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Figure 3-7: Measurement of the time-activity curves in a multi-catheterised pig. 
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3.1.2 Determination of cardiac output 

Cardiac output can be measured by different methods, all of which involve kinetic principles and a 

range of assumptions. Classically, it was determined by Fick’s principle (see the section on 

"Convective flow, non-convective flux – Fick’s principle"), later by an indicator dilution method, 

subsequently with impedance measurement, and most recently by pulse pressure measurement and 

compliance estimation. In addition, stroke volume (and thus the cardiac output) can be determined by 

isotope cardiography, MR techniques, and echocardiography. 

 

In Fick’s principle the speed of oxygen uptake in the lungs and the concentration of oxygen are 

measured in mixed venous blood (a. pulmonalis) and blood from the arterial system, see Figure 3-2. 

With this method, measurement takes place over a sufficiently long period to obtain representative 

and connected values for oxygen uptake, mixed venous oxygen concentration, and arterial oxygen 

concentration. The cardiac output measured, is that of the right heart.  It is therefore a requirement 

that no significant shunts are present and that the contribution from bronchial artery/veins and 

myocardium directly to the left atrium is minimal, see Figure 3-9.  In the presence of shunts these will 

affect the size of the blood flow measured. By taking elective blood samples from different locations 

in the circulation the size of the shunt can be measured. Fick’s principle is described in greater detail 

in section 3.1.5. 

 

 

Figure 3-8: Fick’s principle, where convective flow and non-convective flux are combined in the principle 
of mass preservation. The two sampling locations illustrate well-mixed inflows and well-mixed outflows, 
where inflow concentration (Ci) and outflow concentration (Co) can be measured. 
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In the indicator dilution method an intravascular tracer (marked albumin, protein-bound dye, marked 

erythrocytes) is injected as a bolus into the right atrium and serial blood samples are taken from the 

arterial system. The method is most often called the Stuart-Hamilton method, but should more 

correctly be known as the Henriques-Hamilton method, since Stuart used constant infusion. A 

requirement for cardiac output determination by this method is that a complete mixture occurs in at 

least one vascular section from the site of injection to the reception area, generally the left ventricle. 

The injection can thus be given in both the right atrium and a. pulmonalis. It is not important which 

arterial vessel is used for the blood sampling. After some time, the indicator will recirculate and it is 

essential that it is corrected for. This can (as mentioned elsewhere) be done by exponential 

extrapolation or fitting to a suitable curve, e.g. a gamma variate function, see Figure 3-10 and Figure 

3-11. With the usual correction for recirculation, long transit times, especially in cardiac insufficiency, 

may be somewhat underestimated, for which reason the method can give slightly (a few per cent) 

increased values for the cardiac output. A requirement for the tracer to be distributed purely 

intravascularly is not crucial since tracer extravasation to, for instance, the pulmonary interstitium will 

give correct values if the tracer is freely diffusible and also diffuse backwards (e.g. pertechnetate, 

alcohol, 51Cr-EDTA and 3H2O). However, transit time with a pulmonary extravasation of tracer will 

be prolonged and cause potentially bigger problems with correction for recirculation. It is, therefore, 

advisable to use an intravascular tracer. The pulsating flow in the left ventricle is not critical, because 

more than ten sinus-like oscillations (i.e. equal negative and positive oscillations) occur during the 

measurement of cardiac output. The indicator method is described in more detail in section 3.1.4. 

Figure 3-9: Determination of cardiac output by Fick’s principle. It is seen that the bronchial arterial 
circuit (BA) disturbs the principle of mass preservation. At low flow this has no quantitative 
importance. (HV: right ventricle; VV: left ventricle; PA: pulmonal artery; PV: pulmonary vein, L: lung.) 
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Figure 3-10: The shape of indicator dilution curves at inflow and outflow after injection of an intravascular 
tracer. The area under the curve is the same. (With a bolus injection the mean transit time of the bolus itself 
will be very short and in some cases a standard correction can be used (e.g. 1.1 second), so that the 
outflow curve can be taken as an approximation of the transfer function (h(t)). The mean transit time of the 

system will thus be inout ttt −= , see below). 

Figure 3-11: Indicator curves: Measured values, gamma variate function, fitted to the measured 
values, and with the recirculation correction (from Henriksen et. al. 2005118). 
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Coldness has been used as an indicator. This eliminates the recirculation problem but brings about 

different caloric calibrations, and besides catheter constants most thermodilution equipment will 

depend on a standard extrapolation of the down-slope, which is often carried out at 20% of the 

maximum peak. As with other indicator dilution techniques, this raises the risk of underestimating 

slow transit times and thus introduces certain errors in the estimation of low cardiac outputs. There is 

only a small loss of coldness in the lungs.    

 

The impedance of the organism (resistance to alternating current passage through the thorax) depends 

upon the amount of blood standing in the heart cavities. During the systole, a volume corresponding 

to the stroke volume will be displaced and it has been found that the collected volume in larger 

arteries and veins does not change appreciably. This is why the stroke volume measurement 

multiplied by the heart frequency will give an approximate value for the cardiac output. The use of a 

standard calibration produces surprisingly correct values for the cardiac output in quite a large 

fraction of healthy subjects, as well as for patients with various diseases. However, individual subjects 

are quite often also seen with considerable over or underestimation of the cardiac output. For these 

reasons impedance cardiography is most often used to register changes in cardiac output for which the 

method gives acceptable values in all subjects.    

 

With a measurement of arterial compliance (relation between volume change and pressure change) 

combined with a measurement of the shape of the pulse pressure (for instance with finger 

plethysmography) the minute volume can, in principle, be determined as curve compliance multiplied 

by pulse pressure. There are a number of pitfalls here, which fall outside the scope of these notes.  

 

Crdiac output can also be determined by blood pool-marking and gamma-camera examination of the 

heart, MR scanning, and echocardiography. These methods include a range of assumptions and 

limitations, which are described in various textbooks.  
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3.1.3 Constant infusion – Stewart’s principle 

In order to estimate flow in an organ one can infuse a tracer at constant (and known) speed: 

 

F + Fs-

Cout

C0 

t  

ststin CFJ =  

  

 

where stF  is the flow of indicator and stC  is its concentration. oC  is the stationary outflow 

concentration of indicator after ("infinity" long time), i.e. at total mixing but before eventual 

recirculation, see Figure 3-12. A requirement is that the indicator obtains complete mixing responding 

to at least one “cross section” between inflow and outflow. 

After some time there will be mass balance which means that the flux into the system is equal to the 

flux out of the system: 

+== ostststoutin CFFCFJJ )(  

If Fst can be assumed to be much smaller than F, then F can be approximated as: 
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The flux into the system can also be written as: 
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where q is the amount of indicator or dose (activity) and t  is the time it takes to infuse the indicator 

(Figure 3-13 illustrates determination of cardiac output by Stewart's principle). 

Figure 3-12: Constant infusion. 
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Figure 3-13. Stewart’s principle: continuous infusion in vena cava through a catheter, sampling in 
peripheral artery. 
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Figure 3-14. After mixing, the concentration in each branch is similar. The sum of flux in all the 
branches is Jin 

Jin Jin 

F 

F 

Jin=FCo 
Jin=FC1=FC2=...=FCn  

= F1C1 + F2C2+ F3C3+... FnCn 

 F1  F2         ...            Fn              

C1  C2         ...            Cn 
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3.1.3.1  Constant infusion with recirculation 

Since the indicator normally returns to the sampling area after a passage through arteries and veins 

(except the coincidence where the indicator is excreted, broken down or decayed very fast) one has to 

consider this recirculation by e.g. measuring the concentration in a vein on the “not-injected side”, 

)(tCnoninj , which is the concentration the recirculation contributes with (Figure 3-15): 
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One should always consider where there is mixing at inflow and outflow to the actual system, see  

Figure 3-16. 

 

 

 

Figure 3-15: Measurement of the concentration on the injected and the opposite (”noninj”) side. 
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3.1.4  Bolus injection - Henriques and Hamilton 

The following flow determination by bolus injection, i.e. fast single injection of a known indicator 

amount describes Q0.  

 

 

Figure 3-16. Four systems with cross-flow and mixing at those sites, where the sampling is carried 
out. The figure shows that the inflow concentration in certain cases can also be measured upstream 
of the cross-flow provided there is no exchange. This will be the case in many places in the arterial 
system. 
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F

bolus

C0(t)

 

 

 

Mass balance at outflow detection (i.e. by serial sampling and measuring Co) can be written as:  

 

 

 

 

 

Assuming that the concentration curve, without recirculation, approaches an exponential function with 

delay , recirculation can be corrected for by writing the area as the sum of two integrals: 

Figure 3-17: Bolus injection and sampling. 

area

dose

dttC

Q
F

dttCFQ

dttCFtdQ

or

tFC
dt

tdQ
J

o

o

o

o

oo

o

oin

==

=

=

==









)(

)(

Qamount indicator    total theis dQ(t) of integral the)()(

)(
)(

0



 

29 

 

k

C
dttC

Q
F

k

C
dttC

e
k

C
dttC

dteCdttCdttC

o

o

o

o

o

tk

o

o

tk

o

o

o

o

)(
)(

)(
)(

)(
)(

)()()(

)(

)(
























+

=

+

=
−

+

=+=









−−

−−



  

 

 

 

 

 

The constant k and the concentration C () should then be determined from the course of the curve 

before recirculation. The integral from 0 to  can be determined by applying numerical methods. 

Figure 3-18: Correction for recirculation by exponential fitting. 
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3.1.4.1 The principle of the bolus fraction – Sapirstein’s principle 

In the following, an injected bolus is assumed to be mixed in the blood of heart and lungs (central 

mixing) and then ramified in the arteries. The amount of indicator in each ”branch”, n, is distributed 

according to the flow, Fn, in the branch. 

0Q
F

F
Q n

n = , where 
=

=
N

n

n QQ
1

0  

 

This is called the bolus fraction principle or Sapirstein’s principle.  

The flow can be written as dose divided by area under the concentration curve, as above: 
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, where )(tCon is the concentration in branch n.  

 

i.e.  
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Q
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0 ,  

It may be concluded that the same flow is determined independently of the branch where the 

concentration is measured, because the areas under all the time-concentration curves are identical 

even though the shape, maximum, and insertion of the curve may be very different, see  

Figure 3-19. 
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The rule of equal concentration-time areas 
 

 

 

3.1.5   Convective flow, non-convective flux – Fick’s principle 

Fick’s principle is applied when there is a combination of convective flow (particles which flow with 

the blood) and non-convective flux (particles which are removed from or added to the blood). As 

shown in the following, the principle can be used to determine the cardiac output. 

 

ooinin CFJCFJ ==
 

 

J  

 

 

Input and output are represented by the suffixes in and o, respectively. J is the non-convective flux. 

Once again, we apply the principle of mass preservation, see Figure 3-20:    

 
Figure 3-19: Illustration of the rule of the equivalent areas at different sampling sites. The shape and mean transit 
time of the curves can be different, but the areas are identical. This is, among other things, used when sampling 
at different places in the arterial system when determining cardiac output after indicator injection.  

Figure 3-20: Fick’s principle. F is the convective flow, J is the non-convective flux. 
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or written as an equilibrium equation: 
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where flux and concentration are included in the steady-state in the latter equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By measuring the oxygen uptake in the lungs (J =
2OJ ), the oxygen concentration in arterial blood (Co 

= Ca), and the oxygen concentration in mixed venous blood (Cin = Cv, arteria pulmonalis), the 

cardiac output (F) can be determined, see Figure 3-21.  

 

Figure 3-21: Fick’s principle used to measure the cardiac output. 

 

 



 

33 





−
=

+=

+=

va

O

vOa

vOa

CC

J
F

CFJCF

JJJ

2

2

2

 

 

3.1.6  Tissue perfusion – Kety-Schmidt’s tissue saturation method 

In order to determine perfusion in a tissue area, the concentrations on the inflow and outflow sides of 

the tissue area are measured by a suitable indifferent indicator. The index t (tissue) specifies 

concentrations and doses in tissue and should not be confused with the t in parentheses, such as C(t), 

which indicates that the size is a time-dependent variable (Figure 3-22). 

 

 

F F 

Ci(t) C0(t)

 

 

We again apply the principle of mass preservation: 

)()(
)(

tFCtFC
dt

tdQ
oi

t −=
 
is the change per unit of time in the amount of indicator in the tissue 

studied, dQt is the difference in amount of indicator on the outflow side and inflow side at any time. 

The partition coefficient, , is defined as the ratio between the tissue and plasma concentration of 

indicator in equilibrium at constant infusion, i.e.  = ot CC  . 

The equilibrium concentration, C, is the value that the inflow and outflow concentrations approach 

after a “long” time, as shown in Figure 3-23. 

 

The indicator amount Qt in the tissue during equilibrium is:  

Figure 3-22: Tissue perfusion. 
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From the equation we then get: 
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where f is the perfusion coefficient (most often just called perfusion), defined as flow per tissue mass 

 ].
100g

ml/min 
[  In addition to measurements of the concentrations on the inflow and outflow sides, 

determination of perfusion in a tissue area demands a knowledge of the partition coefficient, perhaps 

by using data from the literature. 
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3.2  Extraction  

The extraction fraction, E, is the share of the incoming flux, that is absorbed or withheld in the tissue: 
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where Jret is the retention flux1,10, i.e. the amount absorbed by the tissue per time unit, see Figure 3-24. 

The sum of extracted and transmitted fraction is, of course, always 1. 

Transmitted fraction T = 1-E =  
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Figure 3-23: Kety-Schmidt’s method under ideal conditions: f/=height/area. 
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3.3  Clearance 

Clearance is the speed with which the system removes a particular substance from a reference fluid 

measured as a fictive or real volume flow of the reference fluid.  

 

Clearance is defined as flux divided by the concentration of a reference fluid. 
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The unit is volume per unit of time and since clearance depends on both the flow in the reference fluid 

and the treatment of the substance in the system, the interpretation of clearance is interpreted 

according to the particular substance and reference fluid used in a given connection, see below. The 

following is valid:  

 

 

 

and if the inflowing fluid is taken as a reference, we get: 

 

 

 

If the indicator is completely extracted ( 1=E ), clearance is a measure of flow. If extraction is less 

than 1, clearance is proportional to the flow. 

 

Figure 3-24. Flow through tissue area with retention flux Jret 
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Clearance is a general kinetic term, but is especially useful to describe the function of the kidney. The 

renal plasma clearance of a substance is (as )pref CC =  
p

u

p

u

ref

ret

C

UC

dt

dU

C

C

C

J
Cl


=== , since the 

indicator is transported from plasma to the urine with a retention flux, which is equal to the urine 

concentration )( uC  multiplied by the urine flow )(
dt

dU
U = .  

That amount of indicator per time unit, 
dt

dQ
− , which is transported from plasma to urine, can be 

determined from clearance and plasma concentration or from urinary flow and urinary concentration: 

up CUCCl
dt

dQ
==− 

 

 

If an indicator is filtered across the glomerulus membrane with the same concentration as in the 

plasma water and is not secreted or reabsorbed in the kidney (e.g. 51Cr-EDTA, Gd-EDTA, or inulin) 

the following equation is valid: 

 

,)( UCCGFRCCGFR upoutin
==− since pinoutin CCCC ==−  

or 

Cl
C
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GFR

p

u ==


, i.e. the clearance principle can be used to measure GFR. 

The conditions for GFR determination are then that the indicator is freely filterable through the 

glomerulus membrane, that the substance is not bound to plasma colloids, and that the substance is 

not secreted or reabsorbed in the tubular walls. An example of determination of GFR is given in  

Figure 3-25. 

 

Note that the clearance of a substance does not need to be a physical flow, but it describes the ability 

of the kidneys to remove the substance and can be used as a measure of kidney function1. Clearance 

of creatinine and urea is respectively larger and smaller than the GFR, see later sections about 

determination of the kidney function. 
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Another example of application of the clearance concept is in connection with the metabolism of 

hormones. After constant infusion of a radioactive-labelled hormone, a blood sample is taken when 

the steady state is reached, i.e. the speed of infusion Jin 
 is equal to the flux from plasma Jo.  

p

o

p

in

C

J

C

J
Cl == , where Jin is the known speed of infusion in cps/s and Cp is the measured plasma 

concentration in cps/ml. 

If the plasma concentration of the endogenous hormone, Ch, (ng/ml) is known the secretion  

(appearance) rate R, can be determined as: 
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Figure 3-25. A 65-year-old male patient is given a GFR determination with continuous infusion of 51Cr-
EDTA. Renal plasma clearance is determined from the infusion speed, the change in plasma 
concentration of 51Cr-EDTA (Cp), and the urine collection. The separated amount of indicator (Cu·Vu) in 

the urine is shown in three collection periods of 28, 44, and 42 minutes' duration. At the mark (arrow) 
blood pressure manipulating treatment is carried out. It can be seen that there is good agreement 
between clearance determined by urine collection (67 and 71 ml/min) and infusion (71 ml/min). 
 
The perhaps slightly increasing clearance in the last period (81 ml/min) has not yet resulted in a 
decreasing plasma concentration of indicator, because of the large distribution volume of the indicator. 
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The clearance concept can also be used generally when looking at problems with the transport of 

various substances, including pharmaceuticals and their break-down products120. 

 

3.3.1  Clearance and flux determined at constant infusion and single           

injection 

At the times ..., 21 tt  the following apply: 

,
)(

)(

)(

))()((
)(

1

1

1

11
1

ttC

tQ

tC

tCtCF
tCl

inin

oin




=

−
=  

,
)(

)(

)(

))()((
)(

2

2

2

22
2

ttC

tQ

tC

tCtCF
tCl

inin

oin




=

−
=  

... 

But since CltCltCl == )()( 21  (applies to linear and time invariant systems), we get 

 

ttClCtQ iini = )()(  

and  

 


→===
i

iniiin

i

iin

i

i dttCClttCClttClCtQQ
0

0 )()()()( , that is  




=

0

0

)( dttC

Q
Cl

in

 

 

This dose-area formula is analogous to the formula for cardiac output102. In addition, see Figure 3-26 

and Figure 3-27. 



 

40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3-26. Clearance is determined as the amount of indicator in proportion to the area under the 
plasma-concentration curve. 

Figure 3-27. Plasma concentration of 125-I-serum albumin (expressed as specific activity in per cent of 
the initial value on the y-axis) shown as a function of time. Plasma samples are taken over 3 to 4 
months. The linear course in a semilogarithmic plot shows that it takes a real monoexponential course. 
From Rossing N (1971)90. 

 

Q0 

 

Cp dtpCCldtJdQ

pCClJ
pC

J
Cl

==

=



=

=

=







0

0

0

0

00

·

·
0

dtpC

Q
Cl

dtpCClQ

dtpCCldQ
Q

 201 ml/DAY 

Metabolic clearance 

ml/dag201

)(
0

0 ===




dtta

Q
MCRCl  



 

41 

3.4 Example of curve fit - Clearance of 99mTc-sestamibi from plasma.  

As an example of a calculation of clearance, where it is assumed that a particular model can describe 

the concentration-time curve, the plasma clearance of Sestamibi is examined. 

Sestamibi is injected at time 0 and blood samples are taken at the following times.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The concentration at time 0 is estimated as the injected dose per unit of plasma volume (cpm=counts 

per minute) and the remaining concentrations are those from the plasma samples.  The samples are 

measured in a gamma counter and corrected for decay (half-time 6 hours = 360 min, Acorr=Ameln2/360 ·t) 

 

The detailed kinetics of Sestamibi in plasma is sparsely described in the literature, but if we draw a 

number of concentration curves on semilogarithmic paper (or use a spreadsheet) we can see that the 

curves have two phases corresponding to the two exponents  

21 and kk  in the expression
tktk

eCeCtC 21

21)(
−−

+= , see Figure 3-28. This implies that the model is 

two-compartmental model (where more than two compartments could be pooled). 

 

It is possible to estimate 
2121 og,, CCkk  from the sketched curve but it is faster and more accurate to 

use a programme to fit a non-linear curve (of commercial programme packs available the following 

can be mentioned: SAS, MatLab, SigmaPlot, and GraphPad Prism). 

 

Q0 = 1,24·109 cpm 

Time Concentration 

min cpm/ml 

0 477000 

31 8531 

61 6678 

107 5260 

163 3987 

193 3654 

221 3457 
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A two exponential curve fit on the above data (by GraphPad Prism) gives the following values: C1 = 

8604 cpm/ml, k1 = 0.004423 min-1, C2 = 468396 cpm/ml  and k2 = 0.1974 min-1. The measured data 

and the fitted curve are shown in Figure 3-28 (logarithmic y-axis). 

 

To determine the plasma clearance of Sestamibi we apply the principle from the chapter, Bolus 

injection - Henriques and Hamilton. We have measured the amount of Sestamibi before injection, Q0, 

and can now calculate the area under the fitted concentration curve: 
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Figure 3-28: Plasma time-activity curve for 99mTc-sestamibi after intravenous bolus injection. 
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3.5 Mean transit time 

When particles are transported through a system, they will disperse (spread) during the transport time, 

because they are exposed to various influences from the system.  

Examples of such influences are: 

1) different rates of flow (e.g. faster in the middle of the vessel than in the periphery) 

2) different distances (e.g. through shunts)  

3) mixing in the transport medium of volume of distribution (e.g. in the plasma in the heart   

    cavities) 

4) transports across barriers or through media with limited transport capacity. 

 

The mean transit time ( t , retention time, mean sojourn time) is the designation for the average time it 

takes all the molecules, particles, etc. of a given sort to pass through a specified system1.  

As an illustration one can regard a number of horses (particles) running in a race (the system), see  

Figure 3-29.  The “measurement” is a residual one as we make up the number of horses on the track 

each time until they pass the finishing post. If we plot the number of horses as a function of time, we 

get a graph looking like the one in Figure 3-29. The curve is divided in blocks, where each block 

corresponds to one or more horses, which pass the finishing post at time ti. 

 

 

 
Figure 3-29: Illustration of the transit time and the mean transit time at residual measurement. The 
analogue is a number of horses running in race. The graph shows the number of horses. Each block ends 
when one or more pass the finishing post, so that the top block corresponds to the fastest horses and the 
bottom one to the slowest.  
The mean transit time is the average time of the race.  
 

t1 
t2 

tN 
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If a final number of indicator particles is introduced into the system, the particles will run through the 

system at individual times: t1, t2, … tN. Then, the mean transit time t  expresses the average run 

through time through the system: 

N

t

t

N

i

i
== 1  

The mean transit time can be determined by outflow detection (e.g. serial blood samples) or residual 

detection (e.g. measurement over the tissue area with a gamma camera), as specified in the following 

section. 

 

 

3.5.1 Probability density function of transit times 

3.5.1.1 Outflow detection 

The probability density function for transit times, h(t), for single outflow systems can be defined as 

the relative outflow speed of indicator, after a bolus dose of the size 0Q : 

  1

0

0 )(1)/)((
)( −== s

dt

tdQ

Qdt

QtQd
th ,  

To understand that h(t) is a probability density function for transit times, we can look at the 

approximation tth
Q

tQ
i

i =


)(
)(

0

, where h(ti)t is seen to be the relative amount of particles which 

have disappeared out of the system between ti and ti+t. This means that h(ti)t can be taken as the 

probability that a randomly chosen particle has passsed through the system between ti and ti+t. 

From the theory of probability, we know that the integral 


0

)( dttth  expresses the expected value or the 

mean value of the stochastic variable t. That this is exactly the mean transit time for the system is 

shown below. 

 

 

h(t) can be found from the connection: 
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The integral in the denominator is a normalisation constant, since the collected area under the 

probability density function must be 1: 

1)(

)(

1

)(

)(
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00

0

0

0
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











dttC
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dt

dttC

tC
dtth out

outout

out . 

In order to get the expression for the mean transit time, we consider a system with a final number of 

particles, N, where there is assumed to be i possible run-through times. The mean transit time can be 

written as: 

  =++++=
i

ii
ii

N

tn
tntntntn

N
t ...

1
332211 , since ni is the number of particles with flow time ti .

N

ni  is 

then the fraction of particles with transit time it . 

If a large amount of indicator, Q0, is considered instead, the expression above should be replaced by 

an integral, where the fraction 
N

ni  with transit time it  is replaced by the fraction 
0`Q

dQ
, with transit 

time t: 

0

0

0 0 Q

tdQ

Q

dQ
tt








==  

The size tdQ  is illustrated in Figure 3-30 and Figure 3-31. 

If  dtth
Q

tdQ
)(

)(

0

=  is inserted in the expression for mean transit time, one gets: 

 


=
0

)( dtttht  

or stated from the concentration curve:  








=

0

0
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t

out

out

. 



 

46 

The probability density function for transit times is also called the transfer function or the impulse 

response function of the system. These aspects are discussed further in the Appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cumulated out flux H(t), the transit time distribution, is 

 ==

tt

dQ
Q

dhtH
000

)(
1

)()(  + 

The residual function or the residual fraction is defined as

 
−=−=

t

dhtHtR
0

)(1)(1)(  + 

                                                 
+   is used as an integration variable instead of t, to avoid confusion with time t, which here forms the upper integration 

limit. 

Figure 3-30: Time-activity curve with a specification of the mean transit time (from the broken line). 
Since the mean transit time is the central point of the curve on the time axis, the areas multiplied by the 

distance to t on each side of the line are equal.  
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3.5.1.2 Residual detection 

If an indicator is introduced at time 0 with the mass Q0, and Qi = Q(ti) is the remaining amount of 

indicator at all times, t  can be expressed as: 
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From this we can see that when residuals are used for measuring t , the value is determined as the area 

under the residual curve per mass unit of indicator. On the residual curve, Q0 can be read as the point 

corresponding to t=0, see Figure 3-31.                                                                                                                                                                                                                   

 

 

 

  

Figure 3-31: Example of mean transit time measured by residual detection. The area under the 

broken line, which has the height Q0 and the "width” t , is the same as the area under the residual 

curve. The horizontal lines express single transit times and give an expression of their dispersion.  

t  

 

Qi 

Q0 



 

48 

3.6 Distribution volume 

The distribution volume (VD) is a virtual space (or pool), which is the (imaginary) volume in which an 

indicator amount is distributed after total mixing*.  

VD can be defined by using the mass conservation concept on an indicator amount, Q0 , or an 

endogenous substance, M, relative to its concentration in a reference fluid (plasma) after complete 

mixing: 



=
C

Q
VD

0 or 
)(

)(

tC

tM
VD =  

 where C is the indicator concentration at the steady state and C(t) the concentration of the 

endogenous substance (Figure 3-32). 

 

 

 

 

 

                                                 
* Note that we have here a volume with the usual volume unit. PET studies show dimensionless distribution volumes. This 

is the same as the partition coefficient for tissue and plasma (i.e. the relation between the concentrations in tissue and 

plasma at equilibrium).  

 
 

Figure 3-32: The steady-state concentration (momentary homogeneous mixture) is read as the 
intersection of the concentration curve with the y-axis after a single injection. 

C 
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There is a general relation between volume (V), mean transit time t , and flow (F) through a system: 

FtV =  (see Figure 3-33). 

 

The distribution volume (VD) is in a similar way related to clearance and mean transit time: 

CltVD =  

 

 

 

 

The equation can also appear as:  

JtM = , 

where M is mass or quantity of material (e.g. µmol) and J is flux (e.g. µmol·min-1). 

The mean transit time can be determined by bolus injection and outflow detection107-111 or by 

continuous infusion either with residual detection or with inflow/outflow detection, see Figure 3-34.

Figure 3-33: The relations between volume, flow, and mean transit time. 
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3.7 Transcapillary transport 

Exchange of substance between the capillaries and the surrounding tissue can be described from 

assumptions about flow, inflow concentration, outflow concentration, and the introduction of a 

transcapillary transport limitation. 

The concentration on the outflow side of the capillary, C0, can then be described by the following 

equation 

F

PS

ino eCC −= ,  

Figure 3-34: Determination of mean transit time by bolus injection and continuous infusion. From 
JH Henriksen 199113. 
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where Cin is the concentration on the inflow side, F is the flow through the capillary and PS is the 

permeability surface area product, often just called the PS product (permeability-surface area 

product), the product of the surface area of the vessel, and its permeability for the indicator in 

question10. 

PS can be defined as the relation between the flux and the difference in the concentration between 

each side of a membrane ( )2121 CCPSJ −=→ , where 1 and 2 refer to the two sides of the membrane. 

Thus, PS has the dimensions of a flow, for example with the unit ml/min. A high value for PS means 

that only a small difference in concentration is necessary to carry a large flux from capillary to the 

interstitial space.  

L

L0

x

r

C0Ci

dx

C(x)

 

The substance amount, dQ, which passes through the samll volume element dV with the length dx, is, 

according to the principle of mass preservation and the definition of surface permeability, see Figure 

3-35: 

 

( ) −== dVxCxCPSVdJdQ vasextra )()(   

 ( )dVxCxCPS
V

dJ vasextra )()(
1

−=  dxxCPS
L

)(
1

= ,   

where the relation between the volume: 
L

dx

Lr

dxr

V

dV
==

2

2

2

2




 is exploited, and the extra vascular 

concentration, )(xC vasextra , of the indicator is assumed to be disappearingly small. 

Figure 3-35: Idealised section of capillary. V is the total volume, C(x) the concentration of indicator 
along the capillary and x goes from 0 to the length of the capillary L. 
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At the same time )(xdCFdJ −=  holds true, which follows from the definition of flux and thus 

dxxCPS
L

xdCF )(
1

)( =−  or 

PSdx
LF

xdC
xC

1
)(

)(

1
−=   

By integration on both sides: 

LCo

C
xPS

LF
x

in 0

1
)ln( −= , that is 

LPS
LF

CC ino −=
1

)/ln( , which can be rewritten FPS

in

oFPS

ino e
C

C
eCC // or    −− ==  

Since the extraction, E, is  

)1(FECl

:clearancefor equation   thecan write weSimilarly 
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The outflow concentration compared to the inflow concentration as a function of flow appears from 

Figure 3-36. 

 

Figure 3-36: The connection between relative concentration and flow. Note the unit. 
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Example: We wish to determine the flow, F, of a system and have thus chosen an indicator, which is 

flow-limited. We have been informed that the extraction is E = 0.90, measured at a rest-flow of 

 

F=50 ml/100 g min, 

That is: 

mingml/100115ming100/ml50)1.0ln(190.0 50 =−=−=

−

PSe

PS

. 

In the table below PS is kept constant, while connected values of flow and clearance are determined: 

F 

mg/100 g min 

PS 

mg/100 g min 

PS/F 

 

E 

 

Cl 

mg/100 g min 

10 115.00 11.50 1.00 10.00 

25 115.00 4.60 0.99 24.75 

30 114.90 3.83 0.98 29.40 

50 115.00 2.30 0.90 45.00 

75 114.75 1.53 0.78 58.50 

100 115.00 1.15 0.68 68.00 

200 116.00 0.58 0.44 88.00 

300 114.00 0.38 0.32 96.00 

 

The graph shows (Figure 3-37) that clearance and flow are equal for low flow values, whereas the 

curve approaches PS for very high flow values. 
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As mentioned in the section on clearance, clearance is a measure of flow, when the extraction is close 

to 1: 

FFECl = , when 11/1 / −=−= − FPS

ino eCCE , i.e. when the flow F is low compared to PS (see 

Figure 3-37). When this is met the indicator is said to be flow-limited. 

For low PS values compared to the flow (or a high flow compared to PS): 

PSFPSFeFFECl FPS =−== − /)1( / , which follows from the fact that xe −  for small values of 

x can be approximated by x−1  (Taylor row expansion, see the mathematic appendix). For these low 

PS values the indicator is diffusion-limited. 

 

Thus, for flow-limited indicators, clearance is a measure of flow and for diffusion-limited indicators 

clearance is a measure of the capillaries' permeability expressed by the permeability surface area 

product, PS. 

Figure 3-37: The relation between clearance and flow (from the example) 
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Per Sejersen135 has shown that, with external detection (residual detection) after intra-arterial injection 

of an appropriate indicator, it is possible to perceive the ratio between the maximum of the curve and 

a retropolated value corresponding to the time of the curve maximum as identical with the 

transcapillary extraction of the indicator, see Figure 3-38. 

 

Figure 3-38: Wash-out curve for Kr-85, measured on the surface of the lower limb (crus). From Sejersen P 

1971135  


