
 1

■■ Introduction
Dynamic contrast-enhanced T1-weighted MRI (DCE-MRI) is rela-
tive easy to integrate in a conventional MRI setup, it is cheap, and it 
has the potential to provide important physiologic parameters. Large 
interest has focused on determination of the leakage, also called the 
permeability, of the capillary membranes. The reason is that the per-
meability can be associated with changes in the vascular structure 
seen in malign transformed tissue and in tissue inflammation. The 
reason why the DCE-MRI has this potential is the size of the contrast 
agent (CA) molecules we are using. Typically, MRI CA agents are 
not freely diffusible in tissue, and the capillary membrane normally 
imposes restriction of diffusivity through the capillary membrane in 
normal tissue. In the brain, the normal blood–brain barrier (BBB) 
is nearly impermeable for conventional MRI CA, but the barrier 
breaks down in a number of diseases such as acute multiple sclerosis, 
inflammation, tumors, stroke, and possible dementia and epilepsy.1,2 
Permeability is expressed as the permeability–surface area (PS) prod-
uct, signifying that not only the permeability but also the available 
capillary surface area is determinant for the leakage. The PS product 
is ideally defined from a two-chamber experiment, the chamber hav-
ing an initial concentration of C1 and C2 and J denoting the initial 
flux, that is, number of molecules moving from the first compart-
ment to the second compartment per time unit. The relationship is

 
J C C1 2 2 1→ = − −( )PS

 (1)

Note the transport is sign sensitive. The equation implies a 
first-order transport, that is, the flux out of a compartment is pro-
portional to the concentration in that compartment, which is a 
reasonable assumption, because MRI CA are inert molecules and 
do not react with specific receptors. However, if the transport over 
the membrane is governed by a saturable transport system, the 
Michaelis-Menten kinetics is appropriate. This topic is outside the 
scope of this presentation. Using conventional MR CA, transport 
over the capillary membrane is driven by the concentration differ-
ence over the membrane as described by the equation. But this is 
not the whole story, because the blood flow through the capillary 
(the perfusion) will modify the actual flux over the membrane in a 
subtle way. Intuitively, the higher velocity of the blood through the 
capillary, the less likely is a passage over the capillary membrane. 
It turns out that the determining factor is the ratio PS/F, where 

F denotes the flow through the capillary. The dimension of the PS 
and F is mL/min or corresponding derivates. The relationship can 
be derived based on the following considerations: imaging a single 
capillary of length L and with radius R and having a specific PS 
product for the specific CA we are using. The flow is F, and the CA 
concentration at the inlet and outlet of the capillary is Cin and Co, 
respectively (see Fig. 8.1). In order to simplify matters, these con-
centrations are constant in time, and we assume that the extravas-
cular concentration is so small that it can be ignored, which also 
means no return to the blood, once the CA molecules have left the 
blood over the membrane. These assumptions can easily be modi-
fied later if needed and will not change the basic principle we are 
aiming at. The loss of CA from a short-segment dx centered at posi-
tion x along the capillary using Eq. (1) is
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The CA change inside the capillary over this short segment 
where the concentrations in a thin layer at the entrance and exit of 
the short segment are C(x1) and C(x2), respectively, is
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Combining and integrate these equations gives
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Thus, the concentration at the outlet becomes smaller when the 
PS product is large relative to F and vice versa, verifying our initial 
intuition. In the same setup, we can define the extraction fraction as 
the ratio of the amount taken up by the tissue per unit time to the 
total amount entering the tissue per unit time:
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(3)

Renkin and Crone originally developed these equations.3,4 A 
freely diffusible CA for which PS/F is very large has an extraction of 
nearly one and is called a flow-limited tracer, because the amount 
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in tissue is determined by flow. If the CA is more or less confined to 
the vascular space, because it cannot easily diffuse over the capillary 
membrane, then PS/F is small and the extraction fraction approach 
zero. We then talk about a diffusion-limited CA, because the amount 
in the extravascular space is determined by the PS product. Note 
that the amount in the vascular space is of course determined by  
the delivery of the flowing blood entering the tissue. Because of the 
flow, Eq. (1) does not really describe the transport adequately. The 
transport is still linear meaning that the actual flux is proportional 
to the vascular concentration keeping F and PS the same. In order 
to deal with this situation, we define the clearance as the amount 
taken up by the tissue per unit time normalized to a reference  
concentration:
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The dimension of the clearance is then volume per unit time. 
In words, the clearance is a (fictive) flow and is a measure of the 
volume of the reference solution containing the amount of the CA 
taken up or cleared by the tissue per unit time. Often, it is conve-
nient to choose the reference concentration as the concentration of 
the CA at the inlet. In this case, we get
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and Eq. (1) can be replaced with

 
J K C C1 2 1 1 2® = - PS

 

In order not to deal with too many physiologic constants, the 
last equation is replaced with

 
J K C K C1 2 1 1 1 2® = -

 

using the argument of a membrane transport symmetry, although 
this may not be strictly correct. Note that K1 approach F for E going 
towards 1 for a free diffusible CA (i.e., a flow-limited CA or tracer), 
while K1 approaches the PS product for PS/F going towards zero 
(i.e., a diffusion-limited CA or tracer):
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It is often convenient to normalize flux, PS product, F, and K1 
to the tissue mass Mt or tissue volume Vt. In the following, relevant 
capital letters refer to no normalization, while small letters refer to 
a normalized metric, for example, F is in mL/min, while f is in mL 
blood/100 mL tissue/min. Strictly, this implies a dimension of 

f as 1/min, but it is important to keep the definition in mind. The 
choice between volume and mass is somewhat arbitrary, but strictly 
volume Vt and mass Mt are related as Mt = ρVt, where ρ is the tissue 
density, close to 1 g/mL.

DCE-MRI also allows determination of various compartment 
volumes, as the blood volume where Vp denotes the plasma vol-
ume, Vb denotes full blood volume, Ve denotes extravascular extra-
cellular volume, and Vtis denotes extravascular intracellular tissue 
volume. Thus, Vb + Ve + Vtis = Vt, and Vb/Vt + Ve/Vt + Vtis/Vt =  
vb + ve + vtis = 1, where, for example, ve either is a fractional volume 
or has the dimension mL/100 mL or mL/100 g. The relationship-
between Vb and Vp is given as Vp = Vb(1-Hctsv), where Hctsv is the 
small vessel hematocrit. More generally, in a given context, we 
talk about the volume of distribution (Vd) defined as Vd = Qt/Cref, 
where Qt is the number of CA molecules in a piece of tissue and Cref 
is the concentration of a reference solution of the CA, for example, 
plasma concentration. Ideally, Vd is defined in a situation where 
equilibration between a piece of tissue and the reference solution 
has been established. In words, Vd express the volume of the refer-
ence solution, which contains an amount equivalent to the amount 
in the tissue. If we normalize with the mass or volume of the tissue, 
we get the partition coefficient
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or (5)
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Note that the tissue concentration is then defined as Ct = Qt/Vt 
or Ct = Qt/Mt.

DCE-MRI can also be used for assessing tissue perfusion, for 
example, myocardial perfusion,5,6 and lately, it has been shown 
that when using a high scanner field strength of 3 T, brain per-
fusion can also be measured by DCE-MRI.7,8 Tissue perfusion is 
vital for normal functionality of the tissue, and lack of adequate 
tissue perfusion in various organs is the cause of many diseases, 
and probably more than 50% of all human deaths is directly 
coursed by lack of perfusion, creating tissue starvation, hypoxia, 
and infarction. In that perspective, it is remarkable that the meth-
odology of perfusion measurement is still a very dynamic research 
area, and many perfusion methods are based on Kety’s pioneer-
ing work more than 60 years ago.9,10 All perfusion methods have 
advantages and disadvantages with regard to accuracy, precision, 
invasiveness, and expensiveness. Accuracy is not necessarily the 
ultimate goal, but the applicability in clinical decision making 
may be more relevant.

Figure 8-1. The single-unit capillary model used to derive the Crone and Renkin equation. Here, concentrations are only a function of position. 
Time dependence can be incorporated as well.
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Tissue perfusion (f ) is ideally defined as the volume of blood 
that enters a distinct part of the vascular system such as the capil-
laries in one unit of tissue mass (or volume) per unit time. The 
dimension is therefore mL blood/100 mL tissue/min, which is 
equal with 1/min. Often, the dimension mL blood/100 g tissue/
min is used and reminisces earlier studies of perfusion based on 
in vitro studies, where perfusion was normalized to mass of tissue. 
Keeping the older terminology helps keeping the correct interpre-
tation of perfusion, which may become blurred if using 1/min. 
Because 1 mL of tissue nearly has a mass of 1 g, the number is 
unchanged.

Determination of perfusion, permeability, and distribution 
volumes is based on a mathematical framework, the tracer kinetic 
theory, which in essence are equations describing the mass balance, 
keeping track of the transport of the CA as a function of time.

■■ Basic Tracer Kinetic Theory
The fundamental equation relating tissue concentration as a func-
tion of time, Ct(t), the arterial concentration as a function of time, 
Ca(t), perfusion f, and the residue impulse response function, 
RIF(t), is11

 

C t C t f t f C t
t

t a a( ( RIF( RIF( )d( )) ) )= Ä = -ò
0

t t t
 

(6)

The residue impulse response function is defined as the CA 
fraction remaining in the tissue, after a brief injected bolus, in 
principle as a δ(t) function, directly into the tissue (or voxel), 
as a function of time. Thus, RIF is dimensionless, and because 
the entire bolus by definition is injection at time zero, the first 
function value will be one: RIF(0) = 1. If the entire bolus has a 
minimum transit time through the tissue (the voxel), of several 
seconds, then the RIF holds a function value of one until some 
of the CA molecules begin to leave the tissue in focus. From now 
on, the RIF will show a monotone decrease until it becomes zero: 
the entire bolus has left the tissue, or if it happens that a fraction 
becomes bound irreversible to the tissue, the RIF ends at a cor-
responding value, that is, the fraction that remains in the tissue 
infinitively; this value may be related to the extraction fraction 
(if back-diffusion does not occur). The assumption related to this 
equation is that the system is linear: Doubling the dose or concen-
tration, Ca(t), results in a doubling of Ct(t) (f remains the same as 
well as the RIF), and a delayed input of “a” seconds, Ca(t − a), will 
result in a delayed output C t at( )−( )and that the CA is not being 
produced or metabolized inside the tissue. Such a system is called 
a linear and time-invariant system. This is correct for many of the 
MRI CA we are using. However, one important additional point is 
that the CA has to be equally “visible” irrespective of the location 
of CA, be it in the plasma, the interstitial space, or intracellularly. 
Due to the fact that MRI CA acts by changing the longitudinal 
relaxation rate, R1, of adjacent water protons corresponding to 
the first hydration layer, the ability of water diffusion around the 
paramagnetic core of the CA can influence the level of visibility 
of the CA. As an example, if the CA becomes confined in a small 
compartment, without sufficient water exchange, then the CA 
loses its effect, because complete relaxation of the compartment 
is finite and therefore becomes invisible, that is, additional CA is 
without effect (see later).

Under these assumptions of linearity, ignoring the issue of 
water exchange, the convolution equation can be derived based on 
the following considerations. Imaging a short bolus Qin(0) = FCa(0) 
dt = Vtf Ca(0) dt enters a tissue volume (Vt) at time zero. Using the 
definition of the RIF, the tissue “response” is simply

 
Q t V fC t tt( ) ( )0 RIF( )= t a ∆

 

If an additional input enters the tissue volume at a later time 
point, τ, the tissue response from this input is again

 
Q t V fC t tt t a RIF( )( ) = -( )Dt t

 

Note the time shift of τ seconds of the RIF to the right. The 
total tissue response is the sum of all tissue response functions. 
Generally, if we imagine that the entire arterial input function is 
composed of short inputs (δ-functions), entering as a continuous 
function of τ (substituting ∆t with dτ), and the tissue response is 
linear in the input, the total tissue response at time t will be the 
sum of all the tissue impulse responses corresponding to each τ, 
and we get

 

Q t V C t C t f t f C t
t
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Tissue concentration is here defined as the total amount of CA 
molecules per unit volume of tissue (or unit mass of tissue).

The integration of two functions as in Eq. (6) is called a convo-
lution integral and is described from an operational point of view 
in Figure 8.2.

It is remarkable that Eq. (6), under the above-mentioned 
restriction, is always correct. Obviously, the goal is to find the 
perfusion f and the RIF(t). The physiologic interpretation of the 
RIF(t) is that this function describes the destiny of the contrast 
molecule inside the tissue. The RIF(t) is related to the distribution 
of transit times through the tissue: h(t). In words, h(t) is the frac-
tion of the CA, which leaves the tissue at time t, per unit time, after 
a bolus injection:
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N t
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where dN(t) is the number of CA molecules leaving the tissue at time 
t in the time interval dt and N0 is the entire bolus. Therefore, inte-
grating over time in a time interval will give the fraction having 
left the tissue volume in that time interval, after a bolus injection. 
Specifically, in the time interval from zero (bolus injection) to time 
t1, the fraction having left the tissue is
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Note N(0) = 0: nothing has left the tissue at time zero. The frac-
tion remaining in the tissue at time t1 is then
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h(t) is similar to a probability density function, known from statis-
tic, and the expectation value of the time weighted distribution is 
the typical transit time, the mean transit time MTT, and is given as
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where we have used partial integration. Here, we assume that the 
RIF will be zero after sufficiently long time, that is, all CA molecules 
will leave the tissue eventually. Thus, MTT can be estimated either 
from the frequency function, h(t), or from the RIF(t). In Figure 8.3, 
h(t) is modeled as a gamma-variate function, and the correspond-
ing RIF(t) and 1 − RIF(t) are also shown.
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Figure 8-2. A: Convolution of two functions f(t) and g(t); the order of the functions is interchangeable. B: One of the functions is reflected by chang-
ing the sign of the argument, g(−t).
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Figure 8-2. (Continued ) C–F: The function g(T − t) is created; T determines the exact position of this function.
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Figure 8-2. (Continued )
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Figure 8-2. (Continued ) G–I: For any given value of T, the function g(T − t) is multiplied with f(t) for all values of t, giving the green curve.
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Figure 8-2. (Continued ) J and K: For a given value of T, the result of the convolution at time T, O(T), is the area under the green curve. At T = 307, 
O(307) = 86, which is the area under the green curve. By letting T go though all relevant values, O(T) is calculated for all values of T in that interval. In 
the figure, O(T) has been calculated up to T = 307.
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Is the frequency function h(t) clinically interesting? In 1992, 
Kuschinsky and Paulson suggested that capillary perfusion hetero-
geneity had a significant impact on capillary diffusion capacity and 
that the capacity might be increased by homogenization of the per-
fusion pattern, a response elicited by neurovascular stimulation.12 
This has lately been theoretically substantiated in relation to brain 
oxygen extraction.13 The variance of the frequency function, h(t), is 
a measure of this kind of capillary heterogeneity.

The partition coefficient λ was mentioned above, and if we use 
the arterial full blood concentration as a reference concentration, 
the partition coefficient becomes λ=Ct/Ca. We could also choose the 
capillary concentration in the middle of the capillary or the con-
centration at the outlet (in a vein): λ=Ct/Co. Ideally, the definition 
rests on an equilibrium experiment, but often one assumes instan-
taneous equilibration so λ=Ct(t)/Ca(t). Using the relation
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the requirement of instantaneous equilibration can be relaxed. In 
the situation where the CA is confined to the vascular space, that 
is, no leakage, λ represents the blood volume, for example, in the  
brain, so λ becomes the cerebral blood volume, CBV. If the CA leaks 
easily through the capillary membrane, but does not enter the cells, 
then λ becomes the ve + vb. Finally, there exists an important rela-
tionship between MTT, λ, and f, called the central volume principle: 
MTT= λ/f.11 It can be obtained from our basic tracer kinetic equa-
tion using the Laplace transformation

 
L C t L C t f t fL C t L tt a aRIF( ) ( ) RIF( )( ) ( )( ) = ⊗( ) = ( ) ( )

 

using the fact that Laplace transformation of a convolution integral 
equals the product of the Laplace transformed functions itself, and 
we also get from Eq. (7)
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which inserted in the former equation gives
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where we have eliminated L C ta( )( ) on each side of the equation. 
Taking the inverse Laplace transformation on each side of the last 
equation gives
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Thus, the central volume principle is correct for any shape of RIF.
Above, we have alluded to the information embedded in the 

RIF. The question is how we can estimate RIF and f. Clearly, we need 
to sample many concurrent time points of Ca and Ct in order to esti-
mate RIF and f. But we also need a model of the RIF(t), expressed 
as an analytical mathematical expression, containing our physio-
logic “free” parameters and which can be found in an optimization 
procedure.

■■ Estimation of RIF by Models
Building a model based on assumptions of the destiny of the CA in 
the tissue is intimately related to deriving an analytical expression 
for the RIF, as shown in the following.

Imagine that we have some evidence that all tracer molecules 
entering as a bolus (ideally as a delta function) and traveling with 
the same speed (plug flow) through the tissue will leave the tissue 
(voxel) exactly at the same time Tc. Then, we would build a simple 
model of RIF as RIF(t) = 1 for 0 < t < Tc and RIF(t) = 0 for t > Tc. 
The RIF is shown in Figure 8.4A. If we inject a short bolus with 
concentration Ca(0) at time zero over a very short time interval Δt, 
then the tracer kinetic equation will look like
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A unit step function, U(t), is defined as
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Figure 8-3. Examples of frequency functions, h(t), 
all modeled as a gamma-variate function, and all 
but one normalized so area is 1. The black gamma-
variate function has an area of 0.8; that is, 20% of 
the CA is irreversible trapped in the tissue. Integration 
of h(t) gives the accumulated fraction, which has 
left the tissue as a function of time, 1 − RIF(t), while 
RIF(t) is the fraction remaining in the tissue as a func-
tion of time: The residue impulse response function. 
Note that 1 − RIF(t) + RIF(t) = 1 for all values of t, 
and the turning point (the point at which the first deriva-
tive change sign) of RIT(t) and 1 − RIT(t) occurs cor-
responding to the maximum of the frequency function: 
∂
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Then, the RIF(t) can conveniently be rewritten as

 RIF c( ) ( )t U t U t T= − −( )  

A more reasonable assumption is that we have a distribution 
of transit times where some tracer molecules are somewhat faster 
than others. The Fermi function may capture this situation, with 
the expression

 RIF( )
e

e
t =

+
+

−

−

1

1

ab

a b( )t
  (9)

having two adjustable parameters, where α determines the plateau 
(the minimal transit time) and β is related to the decay due to CA 
leaving the tissue. Note that if t = 0, RIF(0) = 1, and after the pla-
teau, the function decays monotonously. The RIF(t) function is 
shown in Figure 8.4B.

Figure 8-4. Examples of different models of the residue impulse response function. A: A simple model based on the assumption that all CA 
molecules leave the tissue simultaneously. B: A Fermi function, the curve is shown for three different sets of values; note the flexibility of the configura-
tion. C: A monoexponential model compatible with a one-compartment model; note how the distribution volume, λ, influences the timing of the curve. 
D: A biexponential model compatible with a two-compartment model. Note how k1 influences the slow component. E and F: These models take into 
account that a CA concentration can be a function of both time and position in a capillary. Essentially, the functions consist of a vascular phase, where 
a fraction of the CA moves through the tissue like a plug flow and leave the tissue simultaneously, while another fraction leaks into the extravascular 
space and gradually leaves the tissue afterwards.
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A common approach is to consider the tissue as consisting of one 
or more compartments. Ideally, a compartment constitutes a volume 
fraction of the total tissue, where uniform concentration is established 
so fast at each time point so the concentration can be characterized 
as C(t), that is, the compartment is well mixed, and a possible slow 
diffusion within a compartment is ignored. The starting point for 
compartment analysis is based on an extension of the Fick principle
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which states that the change in the amount of a CA in a given com-
partment is equal to the sum of all fluxes in and out of the com-
partment, where fluxes entering the compartment are positive and 
fluxes leaving the compartment are negative. As an example, we will 
derive the transport equation for a freely diffusible tracer. If mem-
branes do not restrict diffusion through the tissue, the tissue (or 
voxel) will behave, as a one-compartment system, and the change of 
the amount in the tissue is according to the Fick principle14
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assuming either one inlet and one outlet, or if multiple inlets exist, 
it will sum up to Jin and similar for the outlet. If blood is the source 
of delivery of the CA, and CA is not produced or metabolized inside 
the tissue and also leaves by blood plasma, then we have
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where Vt is the volume (or the mass) of the tissue, F is the total 
blood flow entering the tissue in focus (e.g., mL/min), and Ca(t) 
is the arterial concentration and Co(t) is the concentration at the 
outlet. For a freely diffusible CA, it is a reasonable assumption that a 
fast equilibrium exists between tissue concentration and concentra-
tion at the outlet at any time point, giving λ=Ct(t)/Co(t), that is, the 
partition coefficient. Depending on the particular CA used, λ can be 
larger, equal, or smaller than Vt. Inserting this relationship results in 
a solvable first-order differential equation:
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With the initial conditions that Ct(0) = 0, the solutions is
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This equation is appropriate for labeled water or radioactive 
xenon. Thus, the RIF is a simple monoexponential function (see Fig. 
8.4C) with two physiologic constants, the perfusion and the parti-
tion coefficient. If the time course of the tissue concentration and 
the arterial concentration as a function of time are measured, then 
these two constants can easily be estimated using standard fitting 
procedures. This equation is based on the pioneering work of Kety.10

In the MR field, we are not so lucky as to have a freely diffusible 
CA yet. In, for example, muscle tissue, the extraction fraction dur-
ing the first pass is around 50% to 60%; in the liver, it is probably 
higher; and in the brain, it is close to zero. For an MR CA, which is 
confined to the plasma volume, the equation will be
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where Fp is the blood plasma flow entering the tissue in focus (e.g., 
mL/min), C ta

p( )  is the arterial plasma concentration, and C to
p ( )  is 

the plasma concentration at the outlet. The conversion to full blood 
is given by
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where HctSV and HctLV are the small-vessel hematocrit and large-
vessel hematocrit, respectively. The small-vessel hematocrit is used 
in conjunction with F because F relates to the microcirculation 
within the tissue, while the large-vessel hematocrit in conjunction 
with the input function relates to measurements in larger arteries. If 
we still can assume that l = C t C tt o

p( ) ( )/ , we end up with a similar 
equation as Eq. (12):
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With the initial condition that Ct(0) = 0, the standard solution is
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In fact, Eq. (14) has been used for brain perfusion with assumed 
intact BBB, and here, the MR CA behaves as an intravascular CA. 
Then, the partition coefficient λ is a measure of the cerebral blood 
volume, CBV. An example is shown in Figure 8.5. Whether one can 
use an intravascular CA for measurement of brain perfusion is con-
troversial, because the results obtained are restricted by the assump-
tion of the monoexponential RIF and may bias the results as pointed 
out by Lassen15 and Weisskoff et al.,16 and it is also uncertain which 
part of the vascular system is actually being measured. At least, it 
would be preferable to be able to model the RIF with a higher degree 
of freedom or without specifying an analytic model at all (see later).

In many types of tissues, the extraction fraction is neither very 
low nor very high. In, for example, the heart muscle tissue, the extrac-
tion fraction during the first pass is around 50% to 60%, and the 
models above might not be the most appropriate in this situation. A 
two-compartment model is a better description of the transport of 
the CA. Here, we let these two compartments be represented by the 
blood plasma in tissue, Vp, with the CA plasma concentration Cp(t) 
in the tissue and the extravascular extracellular space in the tissue 
with volume Ve, with a CA concentration Ce(t) (see Fig. 8.6). Note 
the assumption of the blood volume being represented by just one 
concentration regardless of the location along the capillary. Using 
the Fick principle and assuming first-order diffusion between com-
partments, the transport equations for the two compartments are
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  (15)

Here, F and K1 denote plasma perfusion and plasma clearance, 
respectively, and Ca(t) is arterial plasma concentration (we omit the 
superscript for graphical reasons). In addition, we have the following 
relationships:
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stating that the total tissue volume is composed of the extravascular 
tissue with volume, Vtis, the plasma volume, Vp, and the cell blood 
volume, VHct. It is assumed that the MR CA diffuses fast in the extra-
vascular interstitial space. The second differential equation of 
Eq. (15) can be solved as done previously and gives
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which inserted in the first differential equation gives
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If we apply the Laplace transformation, then we can isolate 
L C tp( )( ) and L C te( )( ), which we are searching for
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Using the Laplace transformation of exponentials as
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we can identify
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and Cp(t) and Ce(t) are then

Figure 8-6. A two-compartment model. Such a model may be rel-
evant for a moderate degree of leakiness. If k1 is zero or very high, a one-
compartment model might be more useful. Using a two-compartment 
model in this situation may result in so-called overfitting and less reliable 
results.

Figure 8-5. The arterial input function, AIF, is obtained from the internal carotid artery. Observed data are the tissue concentration enhancement 
obtained from an ROI placed in brain cortical gray matter. The green curve is a one-compartment model fitted to the data, that is, the AIF convolved with 
the residue impulse function of a one-compartment system. Optimum of the two free parameters, f and λ, is shown. Because the CA is nearly confined 
to the vascular space because of the blood–brain barrier, λ, is a measure of the cerebral blood volume in the ROI.
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Total tissue concentration, Ct(t), is then found from
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  (16)

where f = F/Vt, and conveniently, all other constants are nor-
malized by Vt. Conversion to full blood reference is also 
straightforward. Note that the residue impulse response func-
tion is biexponential and RIF(0) = 1 (see Fig. 8.4D). The two- 
compartment model has four free parameters: fp, k1

p, ve, and vp. 
This type of model has previously been applied to a number of 
diseases in different organs including the brain lately.8,17 Brix 
already presented a simplified version of the two-compartment 
model in 1991.18 An example of using this model in a leaky brain 
tumor is shown in Figure 8.7.

The first tracer kinetic model, often called the Tofts model, used 
in conjunction with MRI, focused on estimation of BBB permeabil-
ity of multiple sclerosis plaques and brain tumors19,20:
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Note that K trans = =( )k Efp p
1  is the tissue clearance (tissue uptake 

transfer constant) with reference to plasma with the dimension mL 
plasma cleared/100 mL tissue/min (a capital letter in Ktrans is tradi-
tional used), C ta

p( )  is plasma concentration of the CA, while Ca(t) 

is full blood concentration. The assumptions behind this model are, 
firstly, that the vascular volume fraction in the tissue is vanishing 
small and can be ignored and, secondly, that the arterial plasma 
concentration of the CA represents the input function to a distribu-
tion volume, which is equivalent with the extravascular extracellular 
space, ve. Note that if ps ≫ f (E = 1), then Ktrans = fp, and we are back 
to Eq. (12). If ps ≪ f (E → 0), Ktrans = ps. Thus, the residue impulse 
response function in this case is RIF(t) = exp(−Ktranst/ve). After 
the introduction of Eq. (17), it was quickly being used outside the 
brain, and it soon became clear that the vascular component could 
not be ignored and constituted a significant part of the MR signal 
in many types of tissue, for example, in the heart.21 In order to ame-
liorate this situation, the vascular volume was included giving the 
following equation, often denoted as the extended Tofts model22:

 C t v C t k C t
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v
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p p
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p
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( ) ( ) ( ) exp= + ⊗ −
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
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The specific assumption associated with this expression is that the 
plasma fraction in the tissue has a CA concentration equal with the 
arterial plasma concentration (which is measured), and the loss from 
the vascular space due to leakage is so small that it can be ignored; 
obviously, this equation implicitly suggests a very small k1

p ps≈  prod-
uct. The extended Tofts model has three unknown free parameters: k1

p, 
ve, and vp. Formally, the RIF(t) = vpδ(t) + exp(−Ktranst/ve).

It is increasingly being recognized that Eq. (18) in some situ-
ation is inadequate to describe the CA transport in some type of 
tissues, or at least, the interpretation of k1

p is somewhat ambiguous, 
as it is often correlated with both perfusion and permeability.23–25 It 
has even been shown that a good fit of Eq. (18) to data is no guar-
anty of obtaining accurate results,24 and more elaborate methods 
should probably be used (see below).

Equation (18) is a good starting point for deriving the famous 
Patlak equation.26 If leakage is unidirectional, that is, negligible 
backflux, then RIF(t) = 1, and Eq. (18) becomes

 C t v C t k C
t

t p a
p p

a
p d( ) ( ) ( )= + ò1

0

t t  

Again, the assumptions are a unidirectional transport, that is, an 
irreversible leakage, and the arterial plasma with concentration 

Figure 8-7. Observed data are the tissue concentration enhancement obtained from an ROI placed in a brain tumor. Note that data show a 
pronounced “vascular” peak followed by a steadier enhancement due to deficiency of the BBB. The green curve is two-compartment model fitted to 
the data, that is, the AIF convolved with the residue impulse function of a two-compartment system. Optimum of the four free parameters is shown.
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C ta
p( )  serves as a source for the leakage inside the tissue, and impor-

tantly, the CA loss from this vascular space is so small that it can 
be ignored. Obviously, for an inert typical MR CA agent, k1

p ps=  
product. Dividing both sides of the equation with the instantaneous 
C ta

p( )  results in the Patlak equation
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If one then plots the ratio C t C tt a
p( ) / ( )  as a function of 

0

t

C C t∫ a
p

a
pd( ) / ( )t t , one will get at straight line with the slope k1

p  and 

an intercept of vp, which are the two unknown in this equation. As 
pointed out by Patlak, vp in reality includes the steady-state volume 
of distribution of all reversible compartments. The Patlak analysis 
has been used successfully in many nuclear medicine studies and 
seems also useful when measuring the BBB permeability in the 
brain when using DCE-MRI.17,27 However, it is important to restrict 
its use in accordance with the assumptions. When used, one will 
notice an initial phase in the Patlak plot, which is related to a vas-
cular transition, and the Patlak equation only relates to the slowly 
steady increase afterwards (see Fig. 8.8). In order to  understand 
the entire curve obtained, it is more instructive to start with the 
two-compartment model,  eliminating all terms related to the back-
diffusion, which we now assume can be neglected:
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Solving these coupled differential equations using the Laplace trans-
formation as previously, and where F, K1, and Ca relate to plasma, gives
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f p = Fp/Vt and all other constants can be normalized to Vt. Note that 
the RIF(0) = 1. Furthermore, if F 

p
 ≫ K 

p
1, as will be the case for a 

unidirectional transport of an inert MR CA, then we get
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Figure 8-8. An example of a Patlak plot: 
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. The 

slope of the regression line corresponds to 
k1, while the intercept corresponds to the 
blood plasma volume vp. Data obtained 
from a leaky brain tumor.
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Obviously, k1
p  is the psp product. It is seen that the initial part in 

a Patlak plot is related a vascular phase, which eventually vanished 
leaving a term k C1

p
a
p d∫ ( )t t , which is related to a steady irreversible 

accumulation of the CA in the extravascular extracellular tissue. 
Equation (20) can in fact be used as a model and fitted to data, when 
back-diffusion can be ignored. The model has three free parameters: 
fp, psp, and vp; however, ve cannot be estimated. Finally, it is important 
to inspect the Patlak plot: If the straight line, corresponding to the 
steady increase, tends to level off for later time points, then this is an 
indication of a possible back-diffusion. In fact, if the uptake is fol-
lowed for very long time, back-diffusion will eventually occur. In that 
perspective, fitting of Eq. (16) to such data seems more appropriate.

The assumption of a uniform well-mixed vascular concentration 
is an approximation and can potentially introduce a bias. In reality, 
one can imagine that the capillary concentration changes as a func-
tion of position along the capillary in addition to being a function of 
time.28,29 Incorporation of time and position constitutes the so-called 
distributed model, signifying that concentration gradients exist within 
the tissue, which is in contrast to compartment models where every 
compartment is well mixed instantaneously and concentration is only 
a function of time. The starting point for this model is related to the 
concentration inside the capillary at location x with a total length L:
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where we have used the same consideration as when deriving the 
Crone-Renkin equation. The equation for the extravascular extra-
cellular space is given as
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The model assumes plug flow, meaning that every cross section 
at location x of the capillary have the same uniform concentration 
characterized by Cp(t,x) and in addition no significant extravascular 
diffusion along the capillary. The solution to the differential equa-
tions using the Laplace transformation results in a residue impulse 
response function consisting of two parts:
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 (22)

I1 is the modified Bessel function. Although the solution is cum-
bersome, the interpretation is straightforward (see Fig. 8.4E). The 
first part, RIF1(t), until Tc corresponds to a fraction of the CA stay-
ing inside the vessels and moving forward as a plug flow and leaving 
the tissue at Tc. This may be called the vascular transit phase. During 
this phase, another fraction can leave the vascular space into the 
extravascular space, still contributing to the total amount in tissue. 
When the vascular phase ends, the RIF is dominated by a slow back-
diffusion from the parenchyma corresponding to the leakage frac-
tion, RIF2(t), signifying loss of CA by perfusion. The transition is a 
direct measure of E, and the mean transit time of the vascular space 
and the extravascular space can be found as the area of the respec-
tive RIF, which correspond to MTT = vp/f p and MTT = ve/f p, respec-
tively.30 The distributed model has not been thoroughly validated 
and compared to a two-compartment model, but several studies 
report a better fit to observed data in brain tumors,31 in infarcted 
myocardium,32 and in neuroendocrine hepatic metastases.33 It is 

likely that the model is highly dependent on the assumption of 
plug flow, meaning no radial gradient in capillary during the initial 
wash-in and also a high time resolution, at the level of a second, in 
order to define the vascular phase with sufficient accuracy. Two vari-
ants of the distributed model exist. The first is the so-called tissue 
homogeneity model, where the extravascular compartment model 
is treated as a well-mixed compartment and therefore only a func-
tion of time.34 However, this does not ease the solution. The second 
is the so-called adiabatic approximation, where the vascular phase 
is assumed to be much faster than the leakage process, and leakage 
occurs only at the venous end of the capillary.35 This leads to a con-
siderable simplification with a residue impulse response function as
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It is evident that the initial vascular phase is similar to the origi-
nal model, but the wash-out phase is substituted by an exponential 
function (see Fig. 8.4F). The adiabatic approximation model was 
implemented and validated using D2O and MRI, and for this setup, 
perfusion seems to be underestimated for higher value of perfusion.36

In the models presented above, we have assumed a one- 
capillary model, that is, one typical capillary is representative for 
all the capillaries in a given voxel or tissue region of interest (ROI). 
However, multiple-pathway models have been proposed consisting 
of many capillaries with different flow distribution and length, and 
each capillary can be characterized by, for example, a distributed 
model.37 The degree of clinical impact of these elaborated models is 
up to future research and will probably benefit from an increasing 
time and spatial resolution of MRI.

■■ Estimation of RIF without a Model
So far, it is clear that estimating perfusion or permeability neces-
sitates building a model based on some specific assumptions of 
how tissue is “handling” the CA used. It is also clear that any model 
will influence the results obtained using that model. In addition, 
it is difficult to prove that one model is more accurate compared 
to another, and even microsphere injection or radioactive water 
(15H2O) in conjunction with PET, normally considered as a gold 
standard, has its limitations.38 However, if a model gives useful clin-
ical results, then accuracy might be secondary.

In order to circumvent the problem of specifying a model, 
model-free or data-driven solution is increasingly being used. The 
starting point is based on the fact that a convolution can be written 
in a discrete form as a matrix equation:
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Here, 
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y  is a column vector representation of Ct, A is a matrix repre-

sentation of Ca, and 
�
x  is a column vector representation of the RIF. 

Specifying the entries of the matrix equation, it looks like
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Obviously, the equation is discretized with a total of N samples and 
with a time resolution of Δt. Scrutinizing this equation will dis-
close the nature of the convolution, however, in a discrete form. 
For information about matrix calculus, see Glodberg, or for a com-
pact tutorial, see Larsson HBW: Introduction to the general linear 
model used in fMRI. In fact, Eq. (25) is the typical computer real-
ization of the convolution, where the RIF may be specified by an 
analytical expression. For example, let RIF(i) = exp(−f Δt(i − 1)/λ), 
i = 1,…,N; then, this can be used in an optimization procedure, 
where the model is specified by having a monoexponential residue 
impulse response function, with two free parameters, f and λ, and 
with N samples of Ct and Ca. The optimization problem can then be 
formulated as minimizing the following term:

 min
� �
yobs calc−{ }y

2

 

where 
�
yobs is the measured tissue concentration and A represents 

the measured arterial input function. Then 
� � �
y yobs calc= + e , with � �

y f t xcalc = D A , the calculated tissue concentration using the model 
fx
�

. The value of f and λ, which minimized the difference between 
the observed and the calculated tissue concentration, that is, the 
error or residual e

�
, is said to constitute the optimal solution.

However, Eq. (25) offers another solution. Under some circum-
stances, it is possible to isolate the RIF(i) giving a direct solution if 
the matrix A can be inverted:

 
� � � �
y f t x x

f t
y= Þ = -D

D
A

1 1A  

From matrix algebra, we know that a unique solution is possible 
if the determinant of the matrix A is different from zero, equivalent 

with all the columns of the matrix are linearly independent, that 
is, the matrix has the rank of N. However, this lucky situation is 
seldom satisfied due to noise, and perhaps interpolation (see later), 
and the matrix becomes what is called singular, or rank deficient. 
Luckily, a solution can always be found in a reduced dimensional 
space, using the singular value decomposition (SVD) obtaining the 
pseudo-inverse matrix A−:

 
� � � � � ��
y f t x x

f t
y y yobs obs calc obs= + Þ = Þ =- -D

D
A A AAe

1
 

It can be shown that this solution also minimizes the residuals, that 
is, the distance between the observed tissue concentration and cal-
culated tissue concentration. Leif Østergaard was the first to intro-
duce this technique in the MR community focusing on perfusion 
measurements using exogenous CA and tracer kinetic theory.39 For 
information about SVD, see Glodberg, or for a compact tutorial, 
see Larsson HBW: Introduction to the general linear model used in 
fMRI. An example of using the SVD in order to estimate perfusion 
in the brain is shown in Figure 8.9.

The use of the pseudoinverse comes at a price: the solution is 
extremely sensitive towards noise, and the unphysiologic oscillation 
of the RIF is a manifestation of the noise sensitivity. In order to sup-
press these spurious oscillations, one can select an empirical thresh-
old below which, all eigenvalues are set to zeros, for example, the 
20% lowest eigenvalues are set to zeros, at a price of underestimat-
ing the perfusion. Thus, the threshold setting is a trade-off between 
unwanted unphysiologic oscillations and distortions of the RIF 
and overfitting at one side and a blunted RIF and underestimation 
of perfusion f at the other side, see Figure 8.9. Another possibility 
is to directly incorporate our theoretical knowledge about the RIF, 

Figure 8-9. Example of the use of the singular value decomposition (SVD). AIF and observed data are the same as in Figure 8.5. A: SVD keeping 
nearly all eigenvalues, that is, no regularization, results in a noisy residue impulse response function and a tendency of overfitting of data. 
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Figure 8-9. (Continued ) B: Keeping only eigenvalues larger than 20% of the first (largest) eigenvalue results in a less noisy residue impulse response 
function, however, still having spurious oscillations and a considerable underestimation of brain perfusion.

Figure 8-10. Example of the use of the generalized singular value decomposition (GSVD) with regularization using the L-curve method (see 
text). AIF and data are the same as in Figures 8.5 and 8.9. Note the reduction of the oscillations of the residue impulse response function, still fitting 
the data and no obvious underestimation of perfusion.
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namely, that the RIF is a nonincreasing function. The “generalized 
singular value decomposition” (GSVD)40,41 seeks to find the solution 
from the minimization of

 min obs 2 2 2
A

� � �
x y L x− + l ( ){ }   (26)

where L is the first derivative operator and λ is the degree of regular-
ization. If λ is set to zero, the solution is not regularized, and the RIF 
may manifest these unphysiologic oscillations. If λ is set to a very 
high value, the solution, that is, the RIF, will become very smooth 
without oscillations. The optimum value of the regularization 
parameter, λ, is found using the curvature of the so-called L-curve, 
a heuristic approach: a trade-off between obtaining a smooth RIF 
and match between A

�
x and 

�
yobs,42 and can be implemented as an 

automatic procedure voxel-wise. A practical implementation is 
given in reference.7 Even the GSVD with regularization, which 
tends to eliminate abrupt changes of the RIF, seems to underesti-
mate perfusion in some situations (see ref.17). Examples of using 
the GSVD in order to estimate brain perfusion are shown in Figures 
8.10 and 8.11. Figure 8.12 shows an example of voxel-wise calcula-
tion of CBF, creating CBF maps of the brain, and Figure 8.13 shows 
maps of permeability of a patient with a brain tumor.

In conclusion, it is possible to find a solution to the general 
tracer kinetic equation (Eq. (6)), without specifying a specific model 
with its associated analytical expression, but the solution is very 
noise sensitive, and one have to regularize the solution, by either 
cutting eigenvalues or incorporating a smoothing operator, with a 
possible impact on the shape of RIF and some underestimation of f.

Equation (25) involves sums of the form Ca(i)RIF(j)∆t, and the 
term represents an area of a square. If Ca(i) or RIF(j) are charac-
terized by a pronounce change from sample to sample, then this 
discrete calculation will overestimate or underestimate the area 
compared to a convolution performed by a real continuous integra-
tion. This will introduce a bias of the resulting perfusion. In order 
to ameliorate this problem, one can either interpolate data to a finer 
temporal grid, for example, by a factor of 2 to 10, or use the trap-
ezoid rule, and Eq. (25) will be given as28
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Figure 8-11. Example of the use of the generalized singular value decomposition (GSVD) with regularization using the L-curve method (see 
text). AIF and data are the same as in Figure 8.7. λ should be interpreted as the volume of distribution and corresponds approximately to the sum of 
vb and ve in Figure 8.7.
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■■ The Arterial Input Function—Direct 
Measurement

The arterial input function, Ca(t), represents the arterial concentra-
tion of the CA used as a function of time and is often abbreviated 
the AIF. It is necessary to measure or estimate the AIF if absolute 
physiologic measures of the tissue are wanted. The AIF can be 
obtained from arterially placed catheter, but it is more convenient if 
the AIF can be obtained from the dynamic images obtained during 
the bolus passage. For the heart, the left ventricle is a good loca-
tion, and for the brain, the internal carotid artery (ICA) is obviously 
a good choice. Ideally, the AIF should be obtained from an artery 
as close as possible to the tissue in focus. If not, the AIF will be 
time shifted compared to the tissue enhancement curve, typically 
a couple of seconds ahead of the tissue. In all the models above, 
we have assumed simultaneous MR signal increase of tissue and 
arterial blood corresponding to the bolus arrival. If this condition 
is not satisfied, severe error of estimates of perfusion and transit 
times might be introduced. Therefore, the AIF should be shifted 

accordingly before applying the tracer kinetic model, or the time 
shift can be incorporated in the model: Ca(t − Tlag). Thus, an addi-
tional parameter enters the model and has to be fitted along with 
the other free parameters of the model, hopefully with an improved 
fit and a significant reduction of the residual error of the fit. 
Another problem is that the shape of the AIF will also change as 
the CA passes through the vascular tree before entering the tissue 
in focus. Typically, the AIF entering to the tissue will look like a 
low-pass filtered (dispersed) version of the AIF measured at a long 
distance from the tissue in focus. This effect is probably small in 
normal tissue, but might become important in ischemic tissue with 
possible collateral vessel formation and long traveling distance. The 
importance of this problem has not really been assessed and is often 
ignored in the MR literature, but in nuclear medicine, the prob-
lem is treated by adding a filter function like exp(−t/Tsmooth) into the 
convolution kernel of Eq. (6), adding an additional parameter to be 
fitted. It should be realized that an error of the AIF directly prop-
agates to the final result, and if the entire AIF is underestimated 
with a factor of 2, then perfusion is overestimated with a factor of 2. 

Figure 8-12. CBF maps using dynamic contrast-enhanced T1-weighted MRI, at 3 T, using a saturation fast-field echo MR sequence, with a 
temporal resolution about 1 second. CBF is calculated pixelwise using the GSVD with L-curve regularization. Color scale is in mL/100 mL/min. The 
subject has a slight asymmetric perfusion pattern corresponding to cerebral media artery, with decreased perfusion corresponding to a known internal 
carotid stenosis at the same side.
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Schmitt et al.43 showed in a computer simulation that the perfu-
sion and the perfusion reserve could be underestimated with 50% 
and 20%, respectively, with an unaccounted dispersion of the AIF. 
Calamante et al.44 showed a similar dependence on a delayed and 
dispersed AIF on CBF calculations.

The configuration of the AIF depends on factors as injection 
rate, central versus peripheral injection site, resistance in the pulmo-
nary circulation, rest, or stress conditions. The peak and duration of 
the AIF are found to correlate with the function of the right and left 
ventricle.45 Saline infusion after the bolus injection of CA may also 
effect the AIF configuration.46 The AIF is also influenced by the con-
centration of CA, and injection rates between 2 and 10 mL/s have 
shown that the peak and width of AIF are significantly lower and 
broader for injection rates at 2 and 3 mL/s than for rates of 5 mL/s, 
but no difference was observed between the rates of 5 mL/s up to  
7 and 10 mL/s.45,47 An obvious question is what is best? There is no 
real consensus on this matter, but a fast injection rate may probably 
be preferred, because of a more favorable contrast-to-noise ratio 
and improved RIF estimation especially in the brain because of a 
more clear distinction between tissue response and the AIF.

The temporal resolution used for obtaining the AIF should 
be high enough, in the order of seconds for the injection rate 1 to 
10 mL/s; otherwise, the fine details of the AIF is missing, and especially 

the peak concentration and the initial slope might be inaccurate 
due to undersampling of the curve. Figure 8.5 shows a typical AIF 
obtained from an ROI placed in the ICA of a human.

The AIF is quite unique from person to person and even from 
trial to trial within the same subject.48 Therefore, the AIF should be 
estimated for each trial; a standardized population-based general 
AIF is not recommendable and should be avoided.

■■ The Arterial Input Function—Correction 
for a Partial Volume Effect

From the above discussion, we see that the AIF should be obtained 
as close as possible to the tissue in focus. This can some time be 
accomplished by choosing a small artery. However, as a conse-
quence, this artery will likely suffer from a partial volume effect, 
which means that the voxels in the ROI will consist of a mixture 
of tissue and blood in the artery, thus a partial volume effect, and 
the arterial concentration will be underestimated. This situation is 
aggravated by the fact that we often want to run a dynamic MR 
sequence with a high time resolution, meaning that we have to 
sacrifice the spatial resolution, that is, reduce the matrix size. The 
consequence is a considerable point spread function, meaning a 

Figure 8-13. Maps of permeability (k1) using dynamic contrast-enhanced T1-weighted MRI, at 3 T, using a saturation fast-field echo MR 
sequence, with a temporal resolution about 1 s. Permeability is calculated pixelwise using the Patlak method. Color scale is in mL/100 mL/min. The 
patient has an enhancing brain tumor and has previously been operated.

0002243019.INDD   20 2/18/2015   12:57:50 PM



 Chapter 8 • Dynamic Contrast-Enhanced T1-Weighted MR Imaging 21

blurring of a small artery and additional underestimation of the 
arterial input function. In addition, the AIF can suffer from pulsa-
tion artifacts, probably related to an inflow effect, but is otherwise 
not rigorously characterized in the literature. One simple way to 
assess the partial volume effect is to look at a profile of the ves-
sel as a function of the spatial resolution and note when a plateau 
occurs inside the vessel. In the left ventricle of the heart, this is eas-
ily obtained with conventional spatial resolution, but often, such 
a resolution in smaller vessels is not compatible with the timing 
requirement, for example, in the brain.

Sometimes, is it possible to correct for the partial volume effect. 
The brain has a large draining venous system, and especially, the 
sagittal sinus has a larger lumen compared to the brain arteries 
including ICA. Conservations of mass tell us that for an organ with 
one inlet (artery) and one outlet (vein), the AIF and the venous 
outflow function (VOF) should have the same area. Thus, matching 
the area of the AIF with the area of the VOF will mitigate, although 
not eliminate the partial volume effect if the vein also suffers from 
some degree of partial volume effect. It has been shown that this 
method has some value in the brain using ICA and the sagittal 
sinus.49 In fact, due to the BBB, the AIF and VOF are almost identi-
cal, and therefore a scaling of the AIF and a time shift of the VOF 
will create a nearly perfect match of the two functions, which also 
signify that dispersion through the normal brain tissue is minimal 
(see Fig. 8.14). It should be remembered that also the basilar artery 
subserves blood to the brain, and the sagittal sinus blood flow con-
stitutes about 50% of the total effluent blood from the brain.

Elimination of a possible partial volume effect from the sagittal 
sinus can be taken one step further, using the phase information. The 

following is based on the study of van Osch, originally developed 
for dynamic susceptibility contrast-enhanced perfusion imaging,50 
but is here adapted for DCE T1 perfusion imaging of the brain, and 
further simplified, and thus easily implemented.

Using the modulus of the MR signal, the general relationship 
between the MR signal and concentration of a paramagnetic CA in 
the blood is S t f M r R C t( ) , , , , , , , ( )= ( )0 1 1TR TE TD b

moda , where S(t) is 

modulus MR signal, t is time, f describes the MR sequence func-
tion, M0 is a constant related to the equilibrium magnetization, TR 
is the repetition time, TE is echo time, α is the flip angle of the 
readout pulses, r1 is the relaxivity, and R1

b  is the blood longitudi-
nal relaxation rate before arrival of the CA. Here, we illustrate the 
implementation using a simple fast-field MR sequence with a non-
selective 90-degree prepulse preceding the first α-pulse by a time 
period of TD, with central phase-encoding scheme, and spoiling 
between lines in k-space. So for this particular sequence, the rela-
tionship is simply

 S t M
R r C t

( )
( )= −( )− +( )

0 1 1 1e
TD b

mod   (28)

In practice, M0 and R1
b  are measured before contrast injection, 

and M0 also includes regional variation due to B0 inhomogeneity; 
B1 inhomogeneity, that is, sinus(α); and a T2* decay term, which 
we consider minimal. Having measured R1

b  and M0 before contrast 
injection, it is easy to find Cmod(t), from the modulus of the MR 
signal.

The blood concentration can also be estimated from the phase 
of the MR signal.51 Especially for a long tube placed parallel with the 
B0 field containing a paramagnetic CA, the relationship between the 

Figure 8-14. The AIF (red) is obtained from the internal carotid artery; the venous curve (blue) is obtained from the sagittal sinus. Fitting 
of the curves is provided by scaling the AIF, while the venous curve is time shifted back in time. In this case, two separated bolus injections, each of 
half dose, are administrated. Note that the AIF suffers from what is believed to be inflow effects, which are completely absent from the venous curve.
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phase change as a function of time (ΔΦ(t)) and concentration as a 
function of time C tphase( )( ) is
 DF p g c( ) ( )t B C t=

2

3 0TE m phase   (29)

where γ is the proton gyromagnetic ratio (4.258 × 107 Hz/T), B0 
is the magnitude of the main magnetic field in tesla, and χm is the 
molar susceptibility of the CA (3.4 × 10−7 mM−1). The sagittal sinus 
constitutes nearly a long tube, and one can always find portions, 
which run parallel with the B0 field, and in addition, transversal 
imaging of the brain allows such a portion to be imaged during 
a perfusion study. If the complex MR signal is obtained, then one 
can calculate the concentration from either Eqs. (28) or (29), and 
if no interfering factors exist, then Cphase(t) = Cmod(t). As shown 
later, Cphase(t) is not equal to Cmod(t), most likely because Cmod(t) is 
affected by a partial volume effect. Cphase(t) is less susceptible to the 
effect of the partial volume, but suffers from poor signal to noise 
and is bias especially for low concentration as shown later.

In order to solve this problem, we consider an ROI placed over 
the sagittal sinus and having a fraction containing blood (vb) and 
a complimentary fraction containing tissue (vt), where vt + vb =1. 
In addition, we assume that these two tissue fractions behave as a 
two-compartment system without any water exchange (see later). 
Therefore, the complex MR signal for this ROI is

S t v M v MR i R r C t i( )
( )= − + −( ) ( )− − +( ) +

t
TD

b

TD
e e e e

t
t

b
mod b

0 01 11 1 1F F ∆FF( )t( )  (30)

where Φb and Φt are initial phase of the blood and tissue compo-
nent in an ROI, respectively. R1

t  is the longitudinal relaxation rate 
of the tissue component.

Before arrival of the CA, we just have

 S v M v MR i R it( )0 1 10 0
1 1= - + -( ) ( )- -

t
TD

b
TDe e e e

t b
bF F   (31)

S(0) is an average of all baseline points before arrival of the CA. 
Therefore, the baseline-subtracted complex MR signal during the 
bolus passage is
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This equation contains two unknown: vb and Φb. If these were 
known, Cmod(t) can be calculated from
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and Cphase(t) can be calculated from
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For correct values of vb and Φb, Cphase(t) = Cmod(t). As vb and Φb 

are unknown, we use C t C tphase mod( ) ( )−( )∑  as a cost function to be 

minimized in a fitting procedure searching for the most optimal vb 
and Φb.

■■ The Arterial Input Function—
Optimization of Dose

The T1-weighted MR sequences typically used in DCE imag-
ing include a prepulse, which is either an inversion or saturation 
pulse. The MR signal range is typically much higher for the AIF 
compared with the tissue MR signal increase. Because of the low 

 tissue response, it is preferable to use a high dose of CA and an MR 
sequence optimized for high sensitivity, for example, long inver-
sion time (TI). However, this may cause truncation and under-
estimation of the AIF due to full magnetic recovery in the blood 
pool. This means an artificial underestimation of the AIF and may 
lead to substantial errors in calculation of tissue perfusion.52 High 
concentrations of gadolinium-DTPA in the blood pool may also 
reduce the signal due to T2* effects,53 and obviously, the shortest 
allowed echo time should be used, which will eliminate or at least 
minimize the T2* effect. The use of a double-echo sequence with 
short echo times might rule out and correct for a possible T2* effect. 
Careful optimization and validation is therefore required, ensuring 
that both the AIF and the tissue signal during the bolus passage are 
measured correctly within the dynamic range of the entire system. 
If this is not possible, the dual-bolus approach,54,55 the prebolus 
technique,56 or the dual-imaging sequence52,57 through repeated 
measurements of the bolus passage using low and high doses of 
CA focusing on the AIF and the tissue response, respectively, is a 
possibility.

■■ The Arterial Input Function—Indirect 
Measurement

Obtaining an AIF can be a challenge and is subjected to many 
potential errors as just explained, and sometimes, no artery is avail-
able in the field of view or close to the tissue of interest. Therefore, 
methods for estimating the AIF without directly measuring the AIF, 
so-called blind estimation of the AIF, are of considerable interest. 
Several methods have been suggested, but only two principal meth-
ods, the multiple reference tissue–based AIF method58,59 and jointly 
estimated AIF seems of relevance. The starting point for these 
methods is the recognition that the equation 

� �
y f t Ax= D  repre-

sents N linear equations, because we have N samples. Furthermore, 
let the entries of 

�
x be specified by an analytic model, for example, 

having three free parameters depending on the actual model used. 
In the situation where AIF is missing, we have N + 3 unknown, 
which cannot be estimated. If we obtain information from multiple 
tissue ROIs, including ROIs placed in pathologic tissue, preferably 
with a large diversity of the physiologic tissue parameters between 
sites, and we assume that R tissue sites are exposed to the same AIF 
(except for a possible difference of arrival time, which also can be 
incorporated), then the number of equations is RN, but the number 
of unknown is only N + 3R. Therefore, in principle, enough infor-
mation is available in order to estimate the matrix A (the AIF with 
N samples). In the multiple reference tissue–based AIF method, the 
AIF is estimated without assuming a specific form of the AIF, and 
the physiologic tissue parameters from all tissue sites are estimated 
in conjunction with the AIF. The estimation of the AIF and the 
other unknown physiologic constants are based on ingenious and 
fast optimization procedure, minimizing the residual error of the 
fit. The method does not provide an absolute scale of the AIF, and 
consequently, the physiologic parameters are estimated only within 
a scale factor (except time constants as Ki/Ve). Scaling of AIF can be 
provided from incorporating, for example, a literature value of the 
interstitial space of the tissue, or from a real single measurement 
of the blood concentration of the CA during the late phase of the 
bolus passage, where the CA is well mixed in the entire blood pool, 
and saturation, arrival time, and temporal resolution are minor 
problems. The obtained blind estimated AIF can then be used to 
calculate the physiologic tissue parameters voxel-wise.

The jointly estimated AIF utilized a parameterized form of the 
AIF. Previous models based on a mono-, bi-, or triexponential AIF 
are not accurate enough. Instead, a superposition of 2 to 3 nor-
malized gamma-variate functions and a Gaussian or sigmoid func-
tions with about 10 to 15 adjustable free parameters seem to model 
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the measured AIF encountered in vivo.60 Thus, the total number of 
free parameters is considerable reduced compared with the mul-
tiple reference tissue–based AIF method and consequently allevi-
ate the requirement of inclusion of multiple reference tissue sites, 
assumed to have the same AIF. However, multiple tissue enhance-
ment curves, randomly selected within a particular tissue type, for 
example, within tumor tissue, is still necessary and assumed to have 
the same (local) AIF, in order to tune the free parameters of the 
AIF.61 As with the multiple reference tissue–based AIF method, a 
model of the RIF is still required, and the tissue physiologic param-
eters are fitted simultaneously. Like the multiple reference tissue–
based AIF method, the AIF and the physiologic parameters of the 
tissue are only determined within a scale factor, and a final scaling 
is still necessary.

The importance of blind estimation of the AIF resides in the 
fact that it provides a possibility of finding and utilizing a local AIF, 
incorporating a possible dispersion, and it alleviates the inherent 
problems mentioned above, thus obtaining a more accurate AIF 
for the given tissue site. It has been shown that local dispersion of 
the AIF can have a significant impact on the results obtained62 and 
that the local AIF in normal brain tissue deviates significantly from 
the local AIF in an adjacent brain tumor. The danger is that using 
algorithms for obtaining a local AIF, which is based on only a local 
set of tissue enhancement curves, results in mixing characteristics 
of the local AIF and the tissue enhancement curves, and thus the 
results will be biased. However, the finding of a significant reduc-
tion of the residual error of the fit to tumor data, when using the 
local blind estimated AIF from tumor tissue, compared to a local 
blind estimated AIF from normal tissue, suggests a real improve-
ment of accuracy.63

Blind estimation of the AIF necessitates a model of the RIF, 
and so far, only the extended Tofts model has been used in DCE  
T1-weighted studies. Future research is needed for investigate blind 
AIF estimation in conjunction with other models. In conjunction 
with dynamic susceptibility-weighted perfusion imaging, it has 
been shown that a blind local AIF can be obtained when using 
independent component analysis, without the need of specifying a 
model for the RIF,64 a method that also should be exploited for DCE 
T1-weighted studies.

■■ Linking Tracer Kinetic Theory and 
Modeling to MRI

Tracer kinetic modeling seeks to describe the biologic systems han-
dling of the CA and works directly on CA concentration. In DCE T1-
weighted MRI, information about the CA is via the MR signal, and 
the signal is generally a nonlinear function of the CA concentration. 
This is because the MR signal is bound to the magnetization in the 
voxel, and the magnetization spans from −M0 to +M0, where M0 is 
the equilibrium magnetization. The CA considered here works by 
enhancing the longitudinal relaxation rate R1 (=1/T1: the recipro-
cal of the longitudinal relaxation time T1) of water protons prefer-
ably by binding to the paramagnetic core of the CA, so-called inner 
sphere relaxation. A smaller contribution comes from the so-called 
outer sphere relaxation, based on proximity between the paramag-
netic core and the water protons.65,66 The relaxation mechanism is 
governed by the large magnetic dipole moment associated with the 
unpaired electrons in the inner electron shells of the paramagnetic 
atoms through an electron–nuclear dipolar interaction. The associ-
ated large dipole creates an oscillating magnetic field with a broad 
frequency distribution, including frequencies at the relevant Lamor 
frequency, inducing relaxation. Because of a fast exchange between 
bound and free water, the relaxation enhancing effect is transmitted 
to the entire water population.65,66 The enhanced T1 relaxation results 
in an MR signal increase when using a T1-weighted MR sequence. 

It is important to realize that the effect of a CA, when using a T2*-
weighted MR sequence can provide relaxation due to the electron–
nuclear dipolar interaction, but also indirectly over a much longer 
distance due to creation of local magnetic field inhomogeneity, a 
susceptibility effect, without direct contact with the paramagnetic 
core of the CA. The MR signal decreases during the bolus passage 
when using a T2- or T2*-weighted MR sequence, because R2 (=1/T2) 
and R2* (=1/T2*) increase. The most often used paramagnetic atom 
is gadolinium (Gd) belonging to the lanthanide series of chemical 
elements with the atomic number 64 (158gadolinium(III) is the most 
abundant and stable isotope). Both theoretical and experimental 
studies have shown that for a homogeneous water solution of the 
normally used MRI CAs, a linear relationship exists between the CA 
concentration and the longitudinal relaxation rate:

 
1 1

1 1

1 1 1 1 1 1T TCA

CA= + Û = + Û =r C R R r C R r CD   (35)

where TCA
1  and T1 are the relaxation times with and without CA, r1 

is the relaxivity defined as the change in the longitudinal relaxation 
rate per concentration unit of the CA (mM s)−1, and C is the con-
centration of the CA. The relaxivity depends on field strength and 
the type of CA. Paramagnetic metals, as Gd is toxic, and toxicity is 
eliminated by chelation with a molecule, for example, diethylenetri-
amine pentaacetic acid (Gd-DTPA), which secures a fast clearance 
by the kidney. In general, the size and configuration of the mol-
ecule, the number of paramagnetic atoms, and water accessibility to 
the paramagnetic core determine the relaxivity. A pertinent ques-
tion is how dependent the relaxivity is on the local biologic tissue 
environment. In a comprehensive study, Donahue et al. measured 
the relaxivity in saline, plasma, and cartilage and found a relaxivity 
of about 4 (mM s)−1 for Gd-DTPA.67 Neither changing the plasma 
protein concentration nor compression of the cartilage (reducing 
the water content) nor trypsinization of the cartilage (nearly com-
pletely removing proteoglycan and fixed charges) had significant 
effect on the relaxivity. At a field strength of 1 T, the relaxivity was 
about 20% higher compared to field strength of 4.7 and 8.5 T. Many 
have measured the relaxivity of Gd-DTPA in biologic tissues, for 
example, the relaxivity of blood plasma is 3.9 ± 0.2 (mM s)−168 and 
4.3 (mM s)−1 in the myocardium at 1.5 T.66 The relaxivity is gener-
ally assumed to be independent of the biologic microenvironment, 
but exceptions might occur.

The MR signal equation derived from the Bloch equation corre-
sponding to the actual MR sequence used provides the link between 
the MR signal and the concentration of the CA. A relevant example 
is imaging using 2D fast gradient echo sequence (GRE sequence), 
with a nonselective 90-degree prepulse, followed by repeated slice-
selective readout α-pulses (flip angle 10 to 30 degrees), each sepa-
rated by a TR of a few milliseconds. The time between the prepulse 
and the first α-pulse is called TD. The MR signal equation becomes 
very simple if centric phase encoding is used, meaning that the first 
phase-encoding step corresponds to the center of K-space (Ky = 0, 
phase-encoding gradient is zero). TE should be as short as pos-
sible and preferably below 1 milliseconds, so T2*-weighing can 
be ignored. Residual transverse magnetization should be spoiled 
effectively by, for example, rf and gradient spoiling before the next 
α-pulse. The signal equation is then

 S S R= − −( )( )0 11sin( ) expa TD   (36)

where S is the MR signal, S0 is the maximal MR signal, and R1 is the 
relaxation rate without any CA. S0 is a constant and proportional 
to proton density, receiver gain, and the local coil sensitivity. The 
time resolution can be as high as 0.5 seconds, depending on matrix 
size and number of slices. Generally, the MR signal is primar-
ily determined by the phase-encoding step corresponding to the 
“zero phase-encoding step” (Ky = 0), because this step is the most 
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important determinant for the overall signal strength. In contrast 
to nuclear medicine measurements, where sampling of radioactive 
counts is more uniform over the sampling interval, the level of the 
MR signal is determined at a distinct point in time, corresponding 
to traversal of the center of K-space. In the present context, Eq. (36) 
is a function of position (the voxel), time, and CA concentration. 
Focusing on time and concentration, the equation becomes

 S t S R r C t( ) sin( ) exp ( )= − − +( )( )( )0 1 11a TD   (37)

If we obtain measurements of S0 sin(α) (taken as one constant) 
and R1 before CA injection, and assume a known value of r1, then 
S(t) can easily be converted to C(t). S0 sin(α) and R1 can be obtained 
by a regular T1 measurement by stepping through a set of TD values 
and measure the corresponding signal. Note that S0 sin(α) obtained 
voxel-wise corrects for scanner inhomogeneity and nonuniform flip 
angle. The nonselective 90-degree prepulse should be as accurate as 
possible, for example, using an adiabatic pulse, and coverage should 
be large in order to label blood entering the field of view. In all per-
fusion imaging, it is important to obtain a reliable baseline signal 
before CA enters the tissue, for example, 10 to 20 samples. If we call 
the average baseline signal Ŝ(0), then Eq. (37) can be expressed as
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If TD is short, we may use the approximation exp(x) ≈ 1 + x 
(x < 0.2) and get
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This equation shows that the relative MR signal change is linearly 
related to the CA concentration, if the argument of the exponential 
function is small. For this reason, some people are using a very low 
dose of CA, to secure linearity. If in addition R1 is assumed and fixed 
at a value, the concentration can be estimated without the initial T1 
measurement. However, assuming a fixed T1 value has lately ques-
tioned as a valid simplification for body imaging.69 It should also be 
noted that if Ŝ(0) is close to zero, the relative MR signal change may 
be very sensitive to noise of the baseline MR signal.

If centric phase encoding is impossible, one has to take all 
phase-encoding steps and the corresponding manipulation of the 
magnetization into account until the center of K-space is reached. 
Note that for short TR of a few milliseconds, the longitudinal 
magnetization evolves during traversal of K-space. If the center of 
K-space is reached after n phase-encoding steps, Eq. (37) becomes70
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(40)

Retrieval of C(t) can be provided by an iterative process. The 
flip angle should either be known or, alternatively, can be estimated 
together with S0 sin(α) and R1 from the T1 measurement voxel-wise 
before CA injection. Again, the 90-degree prepulse should be as 
accurate as possible.

If the 90-degree prepulse is not perfect, or the 90-degree pre-
pulse is replaced by a 180-degree inversion pulse, then longitudinal 
magnetization survives from one frame to the next, the evolution 
of the magnetization from the last α-pulse of a frame to the pre-
pulse of the next frame has to be taken into account, and the MR 
signal equation becomes more sophisticated.71 When taking the 
history of the magnetization into account, steady-state MR signal 
equations are normally calculated and used, that is, the MR signal 
initially shows some oscillation and gradually settles at a constant 

steady-state value. As an example, an often used MR sequence in 
DCE T1-weighted imaging is a 3D spoiled T1-weighted gradient 
echo sequence. The TE is short, preferably a few milliseconds, but 
TR is typically around 100 milliseconds, separating each readout 
α-pulses. The magnetization before each α-pulse is in steady state 
(have the same size), in contrast to the previously mentioned fast 
gradient echo sequences. Such a 3D sequence provides better cov-
erage (slice direction) and better in-plane spatial resolution, and 
possible better signal-to-noise ratio than do corresponding 2D 
sequences, sacrificing the temporal resolution, which often is no 
better than 2 to 3 seconds and often 5 to 10 seconds. The steady-
state MR signal equation, assuming negligible T2* contribution, 
corresponding to the center of K-space is
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Again, C(t) can be estimated if S0 sin(α), R1, and the flip angle is 
known. S0 sin(α) and R1 can be estimated before CA injection by 
varying either TR or the flip angle. A pertinent question is whether 
a steady-state signal equation can be used during the bolus passage 
where the longitudinal relaxation rate changes due to the concen-
tration changes. According to own unpublished simulations, no 
major error is introduced in this situation. However, it is possible 
to follow the magnetization from frame to frame during the bolus 
passage of the CA without relying on a steady-state equation.70

In conclusion, there is a linear relationship between the CA 
concentration and change in the longitudinal relaxation rate. The 
MR signal can be converted to concentration by use of the relevant 
MR signal equation. It is important to optimize the MR sequence 
parameters, for example, a long TI or TD is beneficial for improving 
sensitivity, but in conjunction with a high dose of CA, there is a risk 
of getting full relaxation of the MR signal, especially with regard to 
the AIF, which will suffer from truncation and therefore result in a 
overestimation of the physiologic parameters.

■■ Water Exchange
Biologic tissue contains several compartments, such as plasma, 
erythrocytes, extravascular extracellular space (interstitial space), 
and the intracellular space. The CA distribution is often uneven 
and depends on concentration, permeability of the capillary mem-
branes, cellular membranes, and time for equilibration among 
other factors. In DCE T1-weighted MRI, the effect of the CA in a 
compartment can affect an adjacent compartment without any 
CA, if a significant water exchange between the two compartments 
occurs. In fact, the rate of water exchange between compartments 
influences the overall tissue relaxation. This complicates matters 
but also opens for the possibility of measuring water permeability.

The water exchange can be categorized into four types: fast, 
intermediate, slow, and no-exchange regime.72 The fast-exchange 
regime between compartments a and b with relaxation times T1

a  
and T1

b  is characterized by

 
1 1 1

1 1

1 1t
�

T T
R R

a b

a b− = −   (42)

where

 
1 1 1

t t t
= +

a b  

and τa and τb represent the mean lifetime of a proton in compartments 
a and b, respectively. This equation states that the water exchange 
frequency is much faster than the difference between the two com-
partments’ intrinsic relaxation rates, that is, if each  compartment’s  
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relaxation rate were measured separately. In this case, the overall 
relaxation rate will be73

 R v R v R1 1 1= +a a b b   (43)

where va and vb are the relative fraction of water of the two compart-
ments (va + vb = 1). The two compartments relax with one relax-
ation rate, and the relaxation process is monoexponential. Imagine 
that a CA is added to compartment b with concentration C. Then, 
still assuming fast exchange (could potentially move out of the fast-
exchange regime; see later), the overall relaxation rate is

R v R v R rC v R v R v r C R v r C1 1 1 1 1 1 1 1 1
CA a a b b a a b b b b b b= + = + + = +( )+ b

 

Now, defining an average CA concentration for both compart-
ments as

 ˆ ˆC v v C v Ca b b b+( ) = =  

results in

 R R r C1 1 1
CA = + ˆ   (44)

This equation shows that even though the CA is nonuniformly 
distributed, the system behaves as if the CA is well mixed in both 
compartments, and the system relax monoexponentially, and a T1 
measurement before and after adding the CA will result in a concen-
tration estimate corresponding to an even distribution of the CA in 
the two compartments. An important example is estimation of the 
CA concentration in arterial blood in conjunction with AIF mea-
surement. It is generally accepted that the water exchange between 
plasma and the interior of the erythrocytes is very fast, with an 
exchange rate of 100 Hz.74,75 Even with a plasma concentration up 
to 6 mM as has been observed,6 the fast-exchange regime prevails. 
This means that an estimate of the CA concentration in blood, for 
example, in conjunction with measurement of the AIF, results in an 
estimation of the full blood concentration, even though the CA is 
confined to the plasma. The real plasma concentration can then be 
calculated from C Ca

p
a LVHct= −( )/ 1  where Ca

p  and Ca are arterial 

plasma concentration and full blood concentration, respectively. In 
tracer kinetic equations, it is often convenient to use the real physi-
cal concentrations and only later change concentration reference.

The no-exchange regime means no exchange of water between 
compartments. In this case, each compartment has its own distinct 
relaxation process, and the combined relaxation is multiexponen-
tial. If two compartments a and b have relaxation rate R1

a and R1
b, 

respectively, then the MR signal for a simple saturation recovery 
sequence with centric phase encoding becomes

 S S v S vR R= +0
a
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b1 e 1 e1
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Adding a CA to compartment b will change the relaxation rate 
of only that compartment, and the concentration can be measured 
by carefully measuring the biexponential relaxation process:

 S S v S vR R r CCA a TD b TD
e e

a b b

= − + −( ) ( )− − +( )
0 01 11 1 1

  (46)

If compartment a represents the extravascular space and b the 
vascular space, and we assume no exchange between these compart-
ments, then the vascular space can be estimated from the ratio of 
total tissue MR signal change to the blood MR signal change before 
and after adding the CA76:
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where ΔSb is determined from a blood sample or from an ROI with 
pure blood placed within the vessel. This is quite distinct from 

assuming a fast exchange between blood and the extravascular 
space. In this situation, we would have76
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assuming the same relaxivity for blood and tissue, as is normally 
done. Here, we also assume a fast exchange between the interstitial 
space and the intracellular water in both situations.

The slow exchange regime is defined as72
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In this situation, each compartment’s relaxation rate will be 
modified as
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where τa and τb represent the mean lifetime of a proton in com-
partments a and b, respectively. The intermediate water exchange 
regime77 is
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Hazlewood has developed a two-site exchange model, which 
deals with the water exchange in general.78 The model takes into 
account the combined relaxation and exchange of magnetization 
between compartments. For two compartments a and b, the model 
is given by the two coupled differential equations:
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Conservation of matters implies M M0 0
a a b b/ /t t=  and 

M M0 0 1a b+ = . The solution is then given by
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The amplitude P1 to P4 depends on the initial conditions, and 
a general expression for the amplitudes can be found in reference.70 
Thus, water exchange in general results in a multiexponential 
relaxation process, and estimation of CA concentration is not 
straightforward.

Obviously, a CA confined in a compartment of a multicom-
partment system can become more or less invisible, unless a fast 
water exchange exists between all compartments, and the lack of fast 
exchange complicates estimation of the overall tissue  concentration. 
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However, these problems can be ameliorated by the observation of 
Hazlewood that the initial slope of the MR signal relaxation curve is 
the same for the no-exchange and the fast-exchange regime.78 This 
observation was taken up and elaborated further by Schwickert 
et al.79 and Donahue et al.76 Selecting appropriate MR imag-
ing parameters can minimize the effect of the water exchange, so 
that the obtained MR signal becomes water exchange insensitive. 
An example is a two-compartment system, with no or slow water 
exchange, with the signal equation corresponding to a saturation 
recovery sequence:

 S S v S vR R= − + −( ) ( )− −
0 01 11 1a TD b TDe e

a b

 

If TD is set to a low value, so that the exponential argument is below 
0.2, then

 S S v R v R S
v R v R≈ +( ) ≈ −( )− +( )

0 1 1 0 1 1 1TD ea a b b TD a a b b

 

which is the signal one will obtain in case of a fast-exchange 
regime. Thus, the MR signal does not depend on details of the 
water exchange, and the effect is minimized for a low value of TD 
or TI. For a conventional GRE sequence (Eq. (41)), it is easy to 
show that
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will minimize the effect of water exchange,76 that is, selecting a short 
TR and a relative high flip angle. The reason is that there is only a 
short time for manifestation of the evolution of the water exchange 
for short TR, TD, or TI, and the no-exchange model and the fast-
exchange model will give the same result.

As previously mentioned, the water exchange between plasma 
and erythrocyte is believed to be very fast with a residence life-
time of about 10 to 15 milliseconds for a water molecule within 
the intracellular compartment.80,81 The water exchange between 
the capillary blood space and the extravascular extracellular space 
has been estimated to be less than 7 Hz, corresponding a mean 
lifetime of 140 milliseconds.72,76 If we assume no leakage between 
the vascular space and the extravascular space and a peak con-
centration of about 4 mM in the vascular space, and that the R1 is 
roughly the same for tissue and blood before CA injection, then 
the difference in relaxation rates between the two compartments is 
about 16 Hz at the peak concentration. This should be compared 
with a water exchange rate of about 7 Hz. Obviously, even though 
we have a fast-exchange regime between compartments without 
any CA, we will enter an intermediate and slow water exchange 
regime during the bolus passage, and there is therefore a risk of 
underestimating the CA concentration, if we still assume a fast 
exchange. The largest CA segregation between the vascular space 
and the extravascular space is in the brain, due to the BBB, which 
is nearly impermeable for typical MR CA. In agreement with this, 
the cerebral perfusion was found to be eight times smaller for a 
TI = 0.9 seconds compared to TI = 20 milliseconds, but simula-
tions showed only a 10% underestimation, if TI = 100 millisec-
onds. This is compatible with a water exchange rate of about 3 Hz 
between the vascular space and the extravascular space in human 
brain tissue.70 Thus, the water exchange has a significant impact 
on DCE T1-weighted MRI in the brain, and water exchange 
minimization methods should be employed if the aim is perfu-
sion measurement. This is also most likely for other organs if a 
macrocontrast agent molecule is used. In an in vivo animal study, 
Bjørnerud et al.82 studied the relaxation process in the heart using 
an intravascular CA and found evidence for a biexponential relax-
ation process with a water exchange rate between the vascular and 
extravascular space of 1.39 ± 0.52 Hz.

A more controversial issue is whether the interstitial water space 
is in fast-exchange regime with the intracellular water, for example, 
between the interstitial space and myocytes in the heart. Several 
studies have evaluated the water exchange between the interstitial 
space and the myocytes using isolated heart preparations. Wedeking 
et al.83 found a cellular interstitial water exchange rate of 21 Hz in 
rat hearts and that fast exchange dominates as long as the intersti-
tial CA concentration was below 1 mM. Donahue et al.76 measured 
exchange rates of 8 to 27 Hz for the heart. Judd also studied both 
polylysine-Gd-DTPA and gadoteridol’s effect on the water exchange 
regime in a heart preparation and found evidence for a slow water 
exchange regime for both compounds, but most pronounced for the 
intravascular polylysine-Gd-DTPA.84 Vascular peak concentrations 
for polylysine-Gd-DTPD and gadoteridol were up to 15 and 25 mM, 
respectively, concentration which in our experience are far too high 
and never observed in humans, using conventional doses. Sobol  
et al.85 showed that fast exchange existed up to an interstitial Gd-DTPA 
concentration of 10 mM in rat muscle. As seen, there is no general 
agreement about the level of cellular interstitial water exchange, 
and a large variation of the reported exchange rates is apparent. 
The exchange rate in some of these ex vivo studies could have been 
underestimated if carried out at a temperature of 20°C instead of 
37°C, where water diffusion is higher. The concentration of CA in 
the interstitial space is related to the extraction fraction of the CA, 
and the interstitial concentration is usually lower than the plasma 
concentration. Own tracer kinetic modeling using a typical AIF with 
a peak concentration of 4 mM, a perfusion of 100 mL/100 g/min, 
and 50% extraction never results in a interstitial tissue concentra-
tion of more than 0.5 mM. In a further simulation study, the MR 
signal curves were very similar for fast, intermediate, and slow water 
exchange when extraction fractions were larger than 30% and for 
inversion times up to 800 milliseconds.70 When extraction fraction 
was below 20%, the MR signal curves were clearly separated for fast 
and slow water exchange, when using a TI of 400 milliseconds or 
longer, but were similar when using a TI of 20 milliseconds. Thus, 
a high extraction fraction of a CA promotes conditions for a fast-
exchange regime between the vascular and extravascular space, while 
an extraction fraction of zero, as occurs in the brain or when using 
macromolecular CA, tends to result in a slow water exchange con-
dition between the vascular and extravascular space. Furthermore, 
it was also shown that a slow water exchange regime prevails when 
using an unphysiologic high arterial concentration (a factor 15), 
which cannot be compensated when using short inversion times 
(TI = 20 milliseconds). An in vivo human study showed equal 
myocardial perfusion values, regardless the value of TI in the inter-
val 15 to 598 milliseconds.86 This finding suggests that for the myo-
cardium, the error of assuming fast water exchange both regarding 
the vascular and extravascular exchange and the cellular interstitial 
exchange are relatively small, and thus fast water exchange is likely 
a valid assumption in the heart. This is in contrast to the study of 
Landis et al.87 In this study, the cellular interstitial water exchange 
was only fast up to an interstitial concentration of 0.1 mM. This sug-
gests that it will be problematic to estimate extravascular tissue con-
centration in most situations, but the finding is not compatible with 
some of the previously mentioned results. Lately, Landis et al. study 
was contradicted by a study of human internal obturator muscle by 
Buckley et al.88 In this study, only minimal difference was found when 
fitting a fast water exchange and a no-water exchange model to data, 
and the physiologic constants obtained were not dependent of the 
model of the water exchange being used. In addition, data suggested 
that a fast water exchange regime could be assumed for an interstitial 
concentration up to 0.5 mM. Finally, the study also pointed out the 
large uncertainty of estimated water exchange rates, making definite 
conclusion elusive. No doubt more elaborated models and measure-
ments of the water exchange in various types of tissue are needed.89 
Generally, water exchange minimization methods are recommended.
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■■ Conclusion
Dynamic contrast-enhanced T1-weighted MRI has the ability to 
provide important physiologic information. Compared with other 
methods, it is relatively simple to implement and integrate DCE-
MRI in a standard MRI protocol. The advantages compared to 
dynamic susceptibility T2*-weighted MRI is less susceptibility to 
field inhomogeneity, more reliable estimation of perfusion, and 
BBB permeability due to a robust relationship between concentra-
tion and longitudinal relaxation rate. Disadvantages are less cover-
age and a less favorable contrast to noise of tissue during the bolus 
passage. Implementation of fast multiband sequences will probably 
improve coverage, and higher field strength, for example, 7 T, might 
improve contrast to noise and also pave the way for direct estima-
tion of water permeability in conjunction with estimation of other 
physiologic parameters.
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