

Introduction to Magnetic Resonance Imaging

Adam Espe Hansen, professor

Department of Diagnostic Radiology Rigshospitalet

Basic Kinetic Modeling in Molecular Imaging

UNIVERSITY OF COPENHAGEN

RIGSHOSPITALET

Common medical imaging modalities

UNIVERSITY OF COPENHAGEN

RIGSHOSPITALET

Introduction to Magnetic Resonance Imaging

MR Physics:

- Nuclear spins
- Magnetic resonance
- Precession
- Radio waves
- Signal detectionSpatial encoding
- Relaxation times

MR Image types:

- T2 weighted
- T1 weighted
- Sequence parameters
- FLAIR

UNIVERSITY OF COPENHAGE

RIGSHOSPITALET

Atoms, nuclei, spin

The $\mbox{\bf spin}$ of a nucleus depends on the number of neutrons and protons.

UNIVERSITY OF COPENHAGEN

RIGSHOSPITALET

Nuclear spin and magnetism

Nuclei with $\textbf{spin} \neq 0$ have magnetic properties.

A proton has spin = $\frac{1}{2}$.

Nuclei with spin

atom	abundance
¹H	63 %
13C	0.10 %
²³ Na	0.041 %
31P	0.24 %

Nuclei with spin $\neq 0$ in biological tissue.

ŘH 🐠

MRI of Tut-ankh-amon?

Times T1 and T2

T1 and T2 depend on the microstructure of tissue:

• T1≥T2 for basic physics reasons

- In fluids will T1 and T2 depend on viscosity (T1 is smaller for less viscous fluids).
- \bullet T1 and T2 depend on the amount of water in tissue.
- T1 and/or T2 are affected by iron, deoxy-hemoglobin, MR contrast agent, ...
- T1 are T2 are reduced in fat and WM (myelin).
- T1 and T2 depend on the magnetic field (T2 more than T1).
- Gives T1 and T2 image contrast!

UNIVERSITY OF COPENHAGEN

RIGSHOSPITALET

Introduction to Magnetic Resonance Imaging

MR Physics:

UNIVERSITY OF COPENHAGEN

- Nuclear spins
- Magnetic resonance
- Precession
- Radio waves
- Signal detection
- Spatial encoding
- Relaxation times

MR Image types:

- T2 weighted
- T1 weighted
- Sequence parameters
- FLAIR

RIGSHOSFITALET

- Water content of tissue
- T1 and T2 of tissue
- Diffusion (Brownian motion of water)
- Flow (blood, CSF)
- Contrast agents (Gd)
- Paramagnetic compunds (...)

RIGSHOSPITALET

Introduction to Magnetic Resonance Imaging MR Physics: Nuclear spins MR Image types: To weighted To weig

RIGSHOSPITALET