Basic physiology, blood, tissue and blood-brain barrier

volume of interest (V_{voi}) = volume of parenchyma and interstitial space (V_{voi}^*) + volume of capillary bed (V_{cap})

Tracers

- Present at tracer concentration only
- Steady-state with re. to tracee
- Well mixed with tracee
- Homogenous tissue
- Preservation of mass

Tracers

Stable isotopes
$$\begin{cases} 2H = D \\ {}^{13}C \\ {}^{15}N \end{cases}$$

Dyes

Heat/cold

MR-based contrast (Gadolinium)

Two-Chamber Model: Equal Volumes Semi-permeable membrane

Experiment #1: Initial Conditions

C₁ C₂
4 nM 0 nM

Concentrations exponentially approach 2 nM

Partition coefficient

$$\lambda = C_{\text{tissue}}/C_{\text{blood}}$$

- at equilibrium
- usually $\boldsymbol{\lambda}$ is measured in vitro

- whereas the in vivo measured distribution volume is noted $\boldsymbol{V}_{\boldsymbol{T}}$

Two-Chamber Model: Equal Volumes Semi-permeable membrane

Experiment #2: Initial Conditions
Add protein to chamber 2 to bind 2/3rd of drug

$$C_1$$
 C_2 4 nM 0 nM
 $f_1=1$ $f_2=1/3$

Free Concentration: F Free fraction: f

$$C_1$$
 C_2 4 nM 0 nM
 $f_1=1$ $f_2=1/3$

$$F_1 = f_1 * C_1$$

 $F_2 = f_2 * C_2$
Equilibrium:
 $F_1 = F_2$

Equilibrium concentrations

Equilibrium:
$$C_1 = 1 \text{ nM}$$
 $C_2 = 3 \text{ nM}$

$$F_1 = f_1 * C_1 = 1 * 1 \text{ nM} = 1 \text{ nM}$$

$$F_2 = f_2 * C_2 = 1/3 * 3 \text{ nM} = 1 \text{ nM}$$

$$F_1 = F_2$$

Dynamic Equilibrium Conditions

Equilibrium: Forward rate = reverse rate $k_1 C_1 = k_2 C_2$

$$\frac{k_1}{k_2} = \frac{C_2}{C_1} = \frac{3}{1}$$

Kinetics vs. Equilibrium

$$\frac{\mathbf{k}_1}{\mathbf{k}_2} = \frac{\mathbf{C}_2}{\mathbf{C}_1} = \frac{3}{1}$$

The rate constants determine equilibrium values. Where you are on a given time point depends on how fast the compounds are moving.

 $\mathbf{E} = 1 - \exp(-\mathbf{PS/F})$

Different types of capillaries

Lu

Permeability vs. lipophilicity

P-glycoprotein

Baseline

Cyclosporine

Cyclosporine+ketanserin

Intracarotid bolus injection

$$PS_{1} = \underbrace{V_{\underline{m}}}_{C_{n}+K_{m}} Km(app) = Km (1 + \Sigma[AA_{i}]/Km_{i})$$

Michaelis-Menten behaviour

