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What is tracer kinetic modelling?

• Mathematical description of  a tracer behavior in the body

• From the mathematical description the physiological system 
can be examined
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Shapes of  the curves represent 
different physiology. 
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Input function Tissue functions

Time

Time

Shapes of  the curves represent 
different physiology. 
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What is tracer kinetic modelling?

• Mathematical description of  a tracer behavior in the body

• From the mathematical description the physiological system 
can be examined

• A tracer is injected in a physiological system

• The dynamic changes of  the tracer concentration in the 
tissue is measured
• Tracer concentration as a function of  time  

• Create a mathematical model which relate tracer input to 
measured tracer concentration in tissue
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Tracers
• Administrated into the body

• Measure the tracer concentration in the body
• Radioactive 
• Affect MRI-signal
• Blood sampling
• Other

8



• Tracers can be intravascular, extracellular, free difussible, 
bound to a receptor or behave in a more specific way.

• New tracers are being developed

• Should not disturb the system we are studying
9

• Tracer should provide information of  certain physiology

• Labelled substances, (nearly) behaving physically and 
chemically like other substance
• 15O-H2O, 18F-FDG

• Tracer binding to certain receptors
• Somatostatin receptors, Serotonin receptors, Vascular endothelial 

growth factor receptors
• Indicators not related to physiological substance

• MRI gadolinium based agents, 99mTc-HMPAO

Tracers
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Mathematics to describe the tracer concentration
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Input function

Time

Tissue functions

Time

Output functionsInput functions

Arterial input function
Ca(t)

Mathematical model

Tissue functions
Tissue curves 
TAC (time-activity curve)
Tissue enhancement curve
Ct(t), Ctissue(t)

Physiological system



• Mathematically describe the tracer behavior in the physiological system

• The mathematical model depends on the situation 
• What physiology is examined

• Tissue type
• Tracer type

• Acqusitions method

• No model fits everything

• Choose a model that fits the data and describe a certain phenomenon

Output functionsInput functions

Arterial input function
Ca(t)

Mathematical model

Tissue functions
Tissue curves 
TAC (time-activity curve)
Tissue enhancement curve
Ct(t), Ctissue(t)

Physiological system



Impulse response

Input functions

Time

t1

Delta function

1 System

Impulse response

Time

t1

The response of  a system from a delta functionDelta function = theoretical function of  1 with zero width The response of  the system from theoretical input of  1. 

Impulse response 
function

RF(t)

Description of  system by impulse response function

Input function described as a 
series of  delta functions 

Time



Linearity of  a system

x 
RF(t)

y

a xscaling a y
RF(t)



Linearity of  a system

x1

x2

y1y2

x1+ x2 y1+ y2

RF(t)

RF(t)

Principle of superposition



Examples
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Input functions

t1

RF(t)

Impulse response

t1
Mathematical model

t1

Time
t1

Linearity of  system

t1

t2 t3 t1
Time

t2 t3



Time invariance of  a system

x yx

+ 10s
y

+10s

RF(t)



Input functions

t1

RF(t)

t1
Mathematical model

t2

Time
t1

Time invariance of  system

t2

t2 t1
Time

t2

Impulse response



Time delay, τ

RF(t)=
0 1 2

time
3 4 5 6 7

1

0 1 2 3 4 5 6 73 2 1 07 6 5 4

1

x1 y1(t)

y1(t)= x(t) ·RF(t)

x2 y2(t)

RF(t-5)=

y2(t)= x(5) · RF(t-5)

y1(t)= x(t) ·RF(t-τ)
We add τ describing the delay

y1(t)= x(0) ·RF(t-0)

τ



Input functions

t1
t1

Mathematical model

t2

Time
t1

Time invariance of  system

t2

t2 t1
Time

t2

Impulse response function

RF(t-τ)



Causality of  a system

Output is only observed after an input has enter the system

yx RF(t)



Steady state of  the system
• The physiologic parameter is constant during the measurement

• Examples: Blood flow, glucose uptake

• Consider: Duration of  the measurement in relation change of  
parameters

Output functions

Time



• Parameter oscillates fast compared to the duration of  the 
measurement

BP

time

Steady state of  the system



Input functions

t1

RF(t- τ)

Impulse response

t1

Mathematical model

Time
t1

Linear time-invariant causal steady-state system!

t2 t3 t1
Time

t2 t3



Input functions

t1

RF(t- τ)

Impulse response

t1

Mathematical model

Linear time-invariant causal steady-state system!

t1

Tissue functions as sum 
of  impulse responses

t1

Input functions as series 
of  delta functions 
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Input function Tissue functions

Time

Time

t1

t1

Input functions as series 
of  delta functions Tissue function as sum of  

impulse responses



RF(t)

Mathematical model

t1

𝐶tissue(𝑡) = 𝐶a(𝑡) ⊗RF(t)

Tracer kinetic modelling is to relate Ca to Ctissue(t) by estimating RF(t) 

We measure these two

We make an 
educated guess

t1

Input function Tissue functions

Convolution

Fundamental tracer kinetic equation 

The system can be described by:



Convolution

t1

Input function

t1

Tissue functions

𝐶tissue(𝑡) = 𝐶a(𝑡) ⊗RF(t)

=

⊗

Impulse response function

t1

⊗

𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝑅𝐹(𝑡) = )
'(

(
𝐶&(𝑡 − 𝜏) , 𝑅𝐹 𝑡 𝑑𝜏
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𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝑅𝐹(𝑡) = )
'(

(
𝐶&(𝑡 − 𝜏) , 𝑅𝐹 𝜏 𝑑𝜏

Ca(t-𝝉) RF(𝝉)

𝝉𝝉



• Simple model, one tissue compartment model

How shall we model RF(t)?



• Simple model, one tissue compartment model

K1

k2

Ctissue(t)Ca(t)

𝑑
𝑑𝑡 𝐶!"##$%(𝑡) = 𝐾&𝐶' 𝑡 − 𝑘(𝐶!"##$%(𝑡)

𝐶!"##$% 𝑡 = 𝐶'(𝑡) ⊗𝐾& 𝑒)*!! 𝐶tissue(𝑡) = 𝐶a(𝑡) ⊗RF(t)

J=𝐾&𝐶' 𝑡 − 𝑘(𝐶!"##$%(𝑡)

J=amount of  tracer going into compartment

How shall we model RF(t)?



t1t1

𝐶tissue(𝑡) = 𝐶a(𝑡) ⊗RF(t)

𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝐾) 𝑒'*+!

We can “guess” K1 and k2 from Ca(t) and Ctissue(t) curves

We use a computer for optimal guess

Mathematical 
model



𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝐾) 𝑒'*+!
K1=1, k2=1

K1=1, k2=0.5

K1=1, k2=0.1
K1=1, k2=0.5K1=0.8, k2=0.5

K1=0.3, k2=0.5



𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝐾) 𝑒'*+!

Input function, Ca(t) Tissue function, Ctissue(t)



Input function, Ca(t)

𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝐾) 𝑒'*+!

𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐶&(𝑡) ⊗0.95𝑒'(.((*+

Tissue function, Ctissue(t)

K1=0.95
k2=0.005

𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐶&(𝑡) ⊗0.95𝑒'(.(,+

K1=0.95
k2=0.02

𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐶&(𝑡) ⊗0.6𝑒'(.-+

K1=0.6
k2=0.1

K1

k2
Ctissue(t)Ca(t)
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Input function, Ca(t)

𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝐾) 𝑒'*!!

𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐶&(𝑡) ⊗0.5𝑒'(.-,+

Tissue function, Ctissue(t)

K1=0.5
k2=0.12

𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐶&(𝑡) ⊗0.25𝑒'(.(*+

K1=0.25
k2=0.05

𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐶&(𝑡) ⊗0.15𝑒'(.-+

K1=0.15
k2=0.01

K1

k2
Ctissue(t)Ca(t)
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Input function, Ca(t)

𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝐾) 𝑒'*!!

𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐶&(𝑡) ⊗0.5𝑒'(.-,+

Tissue function, Ctissue(t)

K1=0.5
k2=0.12

𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐶&(𝑡) ⊗0.25𝑒'(.(*+

K1=0.25
k2=0.05

𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐶&(𝑡) ⊗0.15𝑒'(.-+

K1=0.15
k2=0.01

K1

k2
Ctissue(t)Ca(t)



• Simple model, one tissue compartment model

K1

k2

Ctissue(t)Ca(t)

𝑑
𝑑𝑡 𝐶./0012(𝑡) = 𝐾3𝐶4 𝑡 − 𝑘5𝐶./0012(𝑡)

𝐶./0012 𝑡 = 𝐶4(𝑡) ⊗𝐾3 𝑒67!. 𝐶tissue(𝑡) = 𝐶a(𝑡) ⊗RF(t)

How shall we model RF(t)?



• Complex model, two tissue compartment model

K1

k2

Ctissue(t)Ca(t)

𝑑
𝑑𝑡 𝐶./0012(𝑡) = 𝐾3𝐶4 𝑡 − 𝑘5𝐶./0012(𝑡)

𝐶./0012 𝑡 = 𝐶4(𝑡) ⊗𝐾3 𝑒67!. 𝐶tissue(𝑡) = 𝐶a(𝑡) ⊗RF(t)

How shall we model RF(t)?

k3

k4

Ctissue(t)



K1

k2

Ca(t)

How shall we model RF(t)?

k3

k4

• Complex model, two tissue compartment model

𝑑
𝑑𝑡 𝐶3 𝑡 = 𝐾3𝐶4 𝑡 − 𝑘5 + 𝑘8 𝐶3 𝑡 + 𝑘9𝐶5(𝑡)

𝑑
𝑑𝑡 𝐶5 𝑡 = 𝐾8𝐶3 𝑡 − 𝑘9𝐶5(𝑡)

C1 (t) C2 (t)



• Simple model, one tissue compartment model

K1

k2

Ctissue(t)Ca(t)

𝑑
𝑑𝑡 𝐶./0012(𝑡) = 𝐾3𝐶4 𝑡 − 𝑘5𝐶./0012(𝑡)

𝐶./0012 𝑡 = 𝐶4(𝑡) ⊗𝐾3 𝑒67!. 𝐶tissue(𝑡) = 𝐶a(𝑡) ⊗RF(t)

How shall we model RF(t)?



K1

k2

Ca(t)

How shall we model RF(t)?

k3

k4

• Complex model, two tissue compartment model

𝑑
𝑑𝑡 𝐶3 𝑡 = 𝐾3𝐶4 𝑡 − 𝑘5 + 𝑘5 𝐶3 𝑡 + 𝑘9𝐶5(𝑡)

𝑑
𝑑𝑡 𝐶5 𝑡 = 𝐾8𝐶3 𝑡 − 𝑘9𝐶5(𝑡)

C1 (t) C2 (t)



K1

k2

Ca(t)

How shall we model RF(t)?

k3

k4

• Complex model, two tissue compartment model

C1 (t) C2 (t)

𝐶3 = 𝐶4(𝑡)⨂
𝐾3

7!:7":7#: 7!:7":7# ,697!7#
5 − 7!:7":7#6 7!:7":7# ,697!7#

5

∗

𝐾9 −
𝑘5 + 𝑘8 + 𝑘9 − 𝑘5 + 𝑘8 + 𝑘9 2− 4𝑘5𝑘9

2 𝑒6.∗
7!:7":7#6 7!:7":7# ,697!7#

5 +

𝑘5 + 𝑘8 + 𝑘9 − 𝑘5 + 𝑘8 + 𝑘9 2− 4𝑘5𝑘9
2

− 𝐾9 𝑒6.∗
7!:7":7#: 7!:7":7# ,697!7#

5



K1

k2

Ca(t)

How shall we model RF(t)?

k3

k4

• Complex model, two tissue compartment model

C1 (t) C2 (t)

𝐶5 = 𝐶4(𝑡)⨂
𝐾3𝐾8

7!:7":7#: 7!:7":7# ,697!7#
5 − 7!:7":7#6 7!:7":7# ,697!7#

5

∗

𝑒6.∗
7!:7":7#6 7!:7":7# ,697!7#

5 − 𝑒6.∗
7!:7":7#: 7!:7":7# ,697!7#

5



K1

k2

Ca(t)

How shall we model RF(t)?

k3

k4

• Complex model, two tissue compartment model

C1 (t) C2 (t)



𝑑
𝑑𝑡 𝐶3 𝑡 = 𝐾3𝐶4 𝑡 − 𝑘5 + 𝑘5 𝐶3 𝑡 + 𝑘9𝐶5(𝑡)

𝑑
𝑑𝑡 𝐶5 𝑡 = 𝐾8𝐶3 𝑡 − 𝑘9𝐶5(𝑡)

K1

k2
C1 (t)Ca(t)

k3

k4
C2 (t)

K1=0.5
k2=0.01
k3=0.01
k4=0.5

K1=1
k2=0.01
k3=1
k4=0.01

K1=1
k2=0.1
k3=0.8
k4=0.8

Ct(t)Ca(t)



K1

k2
C1 (t)Ca(t)

k3

k4
C2 (t)

K1=0.5
k2=0.01
k3=0.01
k4=0.5

K1=1
k2=0.01
k3=1
k4=0.01

K1=1
k2=0.1
k3=0.8
k4=0.8

C2 (t)C1 (t)

Ct(t)Ca(t)



Summary
• Input function, Ca(t)

• Tissue function, Ctissue(t)

• The input function is related to tissue function by modelling

• The input function and tissue functions is related by the 
impulse reponse function of  the system

• We model the impulse response function of  the system 
• Compartment model
• Choose most simple but correct model

• The parameters used to fit the model can be related to 
physiology

We measure Ca(t) and Ctissue(t)

𝐶tissue(𝑡) = 𝐶a(𝑡) ⊗RF(t)



Tracer functions
• Ctissue(t)
• Scanners

• Ca(t)
• Scanners, image-derived input function

• Blood sampling

• Ctissue(t) and Ca(t) must be in same units or same reference

• Ctissue(t) and Ca(t) shall be measured with sufficient time 
resolution and spatial resolution 
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Input function, Ca(t) Tissue function, Ctissue(t)
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𝛥t

𝑑 𝑡 = 𝑒64.
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Partial volume errors
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Input function, Ca(t)

𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝐾) 𝑒'*!!

𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐶&(𝑡) ⊗0.95𝑒'(.((*+

Tissue function, Ctissue(t)

K1=0.9
k2=0.005

K1

k2
Ctissue(t)Ca(t)

𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐶&(𝑡) ⊗0.95𝑒'(.((*+

K1=1.8
k2=0.005
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Input function, Ca(t)

𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝐾) 𝑒'*!!

𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐶&(𝑡) ⊗0.95𝑒'(.((*+

Tissue function, Ctissue(t)

K1=0.9
k2=0.005

K1

k2
Ctissue(t)Ca(t)

𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐶&(𝑡) ⊗0.95𝑒'(.((*+

K1=1.8
k2=0.005
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Important to measure small voxels
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t

• Longer t gives better image quality 
and/or smaller voxel sizes

• Longer t givers poorer time resolution

However,
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Input function, Ca(t) Tissue function, Ctissue(t)

t

𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝐾) 𝑒'*!!
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Input function, Ca(t) Tissue function, Ctissue(t)

t

𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝐾) 𝑒'*!!

𝑪𝒕𝒊𝒔𝒔𝒖𝒆(𝒕) = 𝑪𝒂(𝒕) ⊗𝟏𝒆/𝟎.𝟎𝟓𝒕
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Input function, Ca(t) Tissue function, Ctissue(t)

t

𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝐾) 𝑒'*!!

𝑪𝒕𝒊𝒔𝒔𝒖𝒆(𝒕) = 𝑪𝒂(𝒕) ⊗𝟏𝒆/𝟎.𝟎𝟓𝒕

𝑪𝒕𝒊𝒔𝒔𝒖𝒆(𝒕) = 𝑪𝒂(𝒕) ⊗𝟏. 𝟒𝒆*𝟎.𝟎𝟔𝒕
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Input function, Ca(t) Tissue function, Ctissue(t)

t

𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝐾) 𝑒'*!!
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Input function, Ca(t) Tissue function, Ctissue(t)

t

𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝐾) 𝑒'*!!

𝑪𝒕𝒊𝒔𝒔𝒖𝒆(𝒕) = 𝑪𝒂(𝒕) ⊗𝟏𝒆/𝟎.𝟎𝟓𝒕
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Input function, Ca(t) Tissue function, Ctissue(t)

t

𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝐾) 𝑒'*!!

𝑪𝒕𝒊𝒔𝒔𝒖𝒆(𝒕) = 𝑪𝒂(𝒕) ⊗𝟏𝒆/𝟎.𝟎𝟓𝒕

𝑪𝒕𝒊𝒔𝒔𝒖𝒆(𝒕) = 𝑪𝒂(𝒕) ⊗𝟎. 𝟗𝒆*𝟎.𝟎𝟒𝟓𝒕



79

Input function, Ca(t) Tissue function, Ctissue(t)

t

𝐶!"##$% 𝑡 = 𝐶&(𝑡)⊗𝐾) 𝑒'*!!

𝑪𝒕𝒊𝒔𝒔𝒖𝒆(𝒕) = 𝑪𝒂(𝒕) ⊗𝟏𝒆/𝟎.𝟎𝟎𝟖𝒕

𝑪𝒕𝒊𝒔𝒔𝒖𝒆(𝒕) = 𝑪𝒂(𝒕) ⊗𝟎. 𝟗𝟖𝒆*𝟎.𝟎𝟎𝟕𝟗𝒕
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• Measurement of  input function
• Same unit or reference
• Avoid partial volume errors from image-derived input function
• Optimal measurement of  input function depends on your 

equipment and experiment setup 

• Spatial resolution (voxel size) vs. time resolution should be 
considered when acquiring data

• Poorer time resolution gives better spatial resolution and better 
image quality 

• With poor time resolution the physiological dynamic might not be 
captured

Summary


