Tracer kinetic modelling Basic concepts

Mark Vestergaard

Engineer, Phd, Senior Researcher Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine Glostrup Hospital

What is tracer kinetic modelling?

- Mathematical description of a tracer behavior in the body
- From the mathematical description the physiological system can be examined

Input function

Time

tation

Dsuperfunctions

Tracer concentration

Time

Shapes of the curves represent different physiology.

Input function

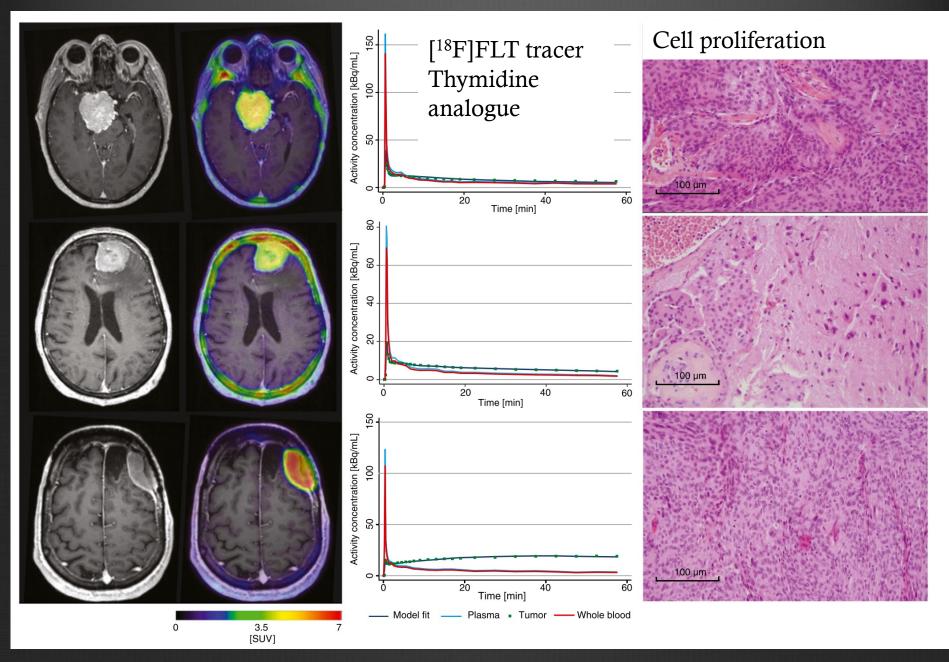
Tissue functions

Tracer concentration

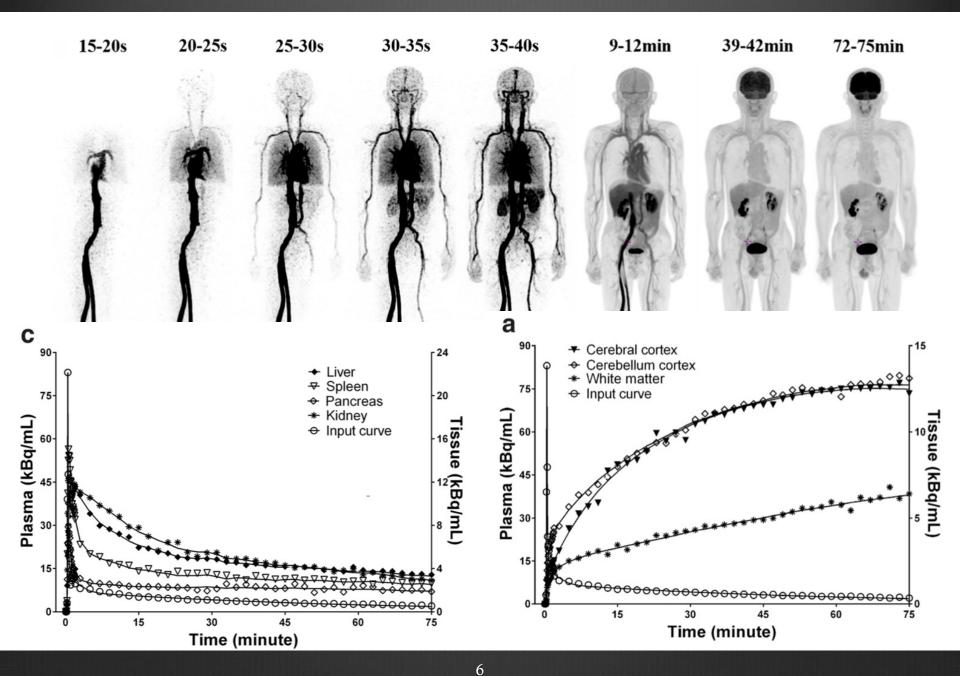
Time

Shapes of the curves represent different physiology.

Time



Asma Bashir et al. European Journal of Nuclear Medicine and Molecular Imaging (2020) 47:1496-1509



Liu et al. European Journal of Nuclear Medicine and Molecular Imaging (2021) 48:2363–2372

What is tracer kinetic modelling?

- Mathematical description of a tracer behavior in the body
- From the mathematical description the physiological system can be examined
- A tracer is injected in a physiological system
- The dynamic changes of the tracer concentration in the tissue is measured
 - Tracer concentration as a function of time
- Create a mathematical model which relate tracer input to measured tracer concentration in tissue

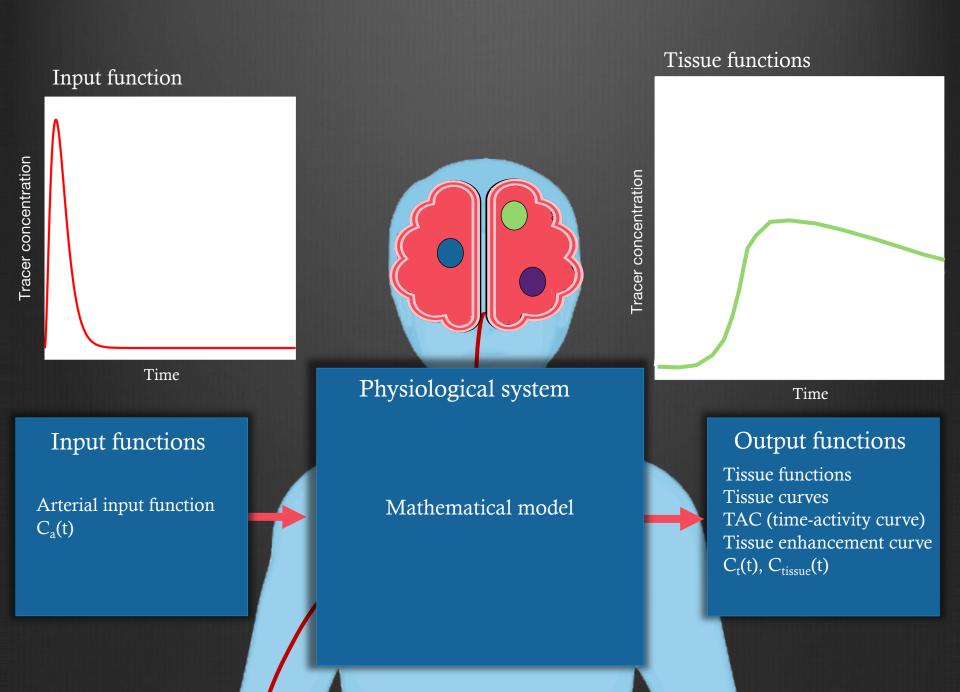
Tracers

- Administrated into the body
- Measure the tracer concentration in the body
 - Radioactive
 - Affect MRI-signal
 - Blood sampling
 - Other

Tracers

- Tracer should provide information of certain physiology
 - Labelled substances, (nearly) behaving physically and chemically like other substance
 - ¹⁵O-H₂O, ¹⁸F-FDG
 - Tracer binding to certain receptors
 - Somatostatin receptors, Serotonin receptors, Vascular endothelial growth factor receptors
 - Indicators not related to physiological substance
 - MRI gadolinium based agents, 99mTc-HMPAO
 - Tracers can be intravascular, extracellular, free difussible, bound to a receptor or behave in a more specific way.
 - New tracers are being developed
 - Should not disturb the system we are studying

Mathematics to describe the tracer concentration



- Mathematically describe the tracer behavior in the physiological system
- The mathematical mo

Input functions

Arterial input function $C_a(t)$

Physiological system

Mathematical model

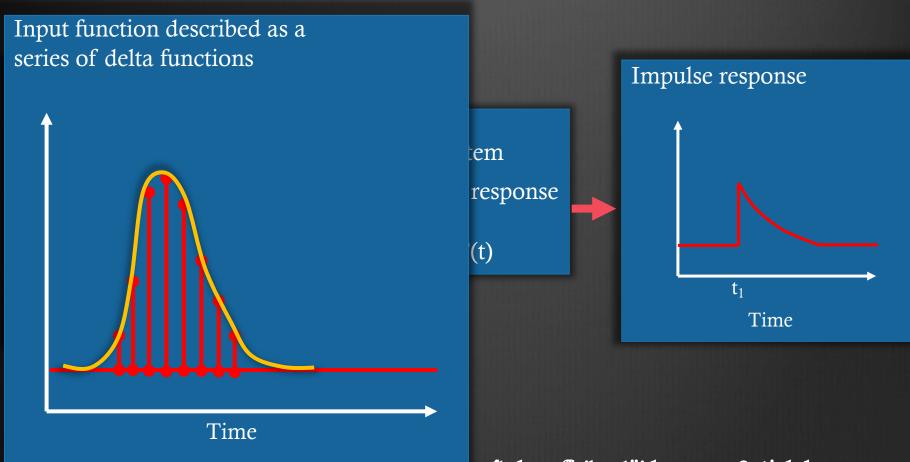
Output functions

Tissue functions Tissue curves TAC (time-activity curve) Tissue enhancement curve $C_t(t), C_{tissue}(t)$

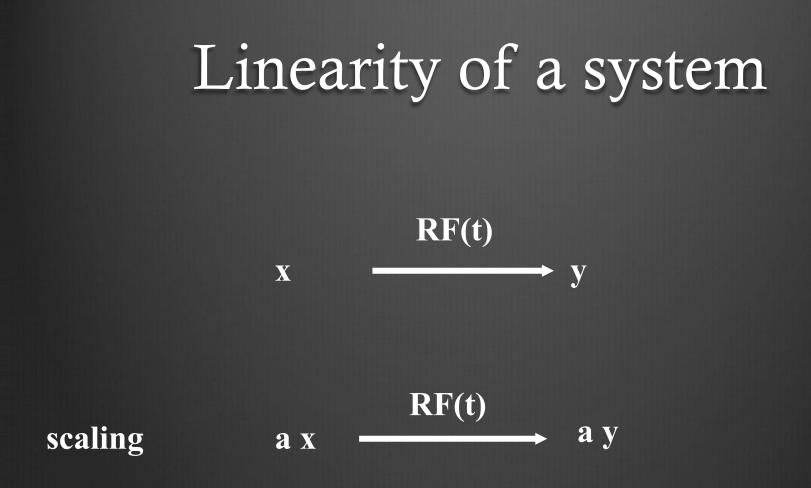
rtain phenomenon

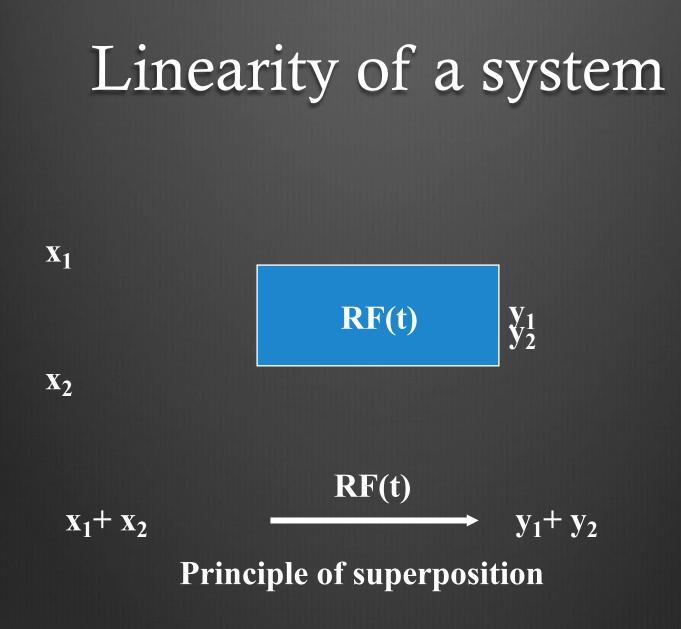
• Choose a model that

Impulse response Description of system by impulse response function

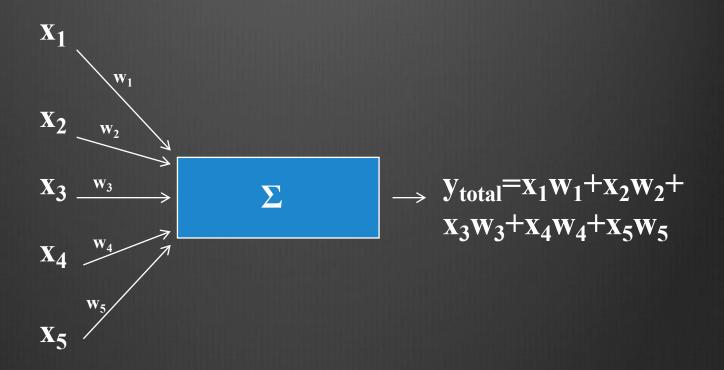


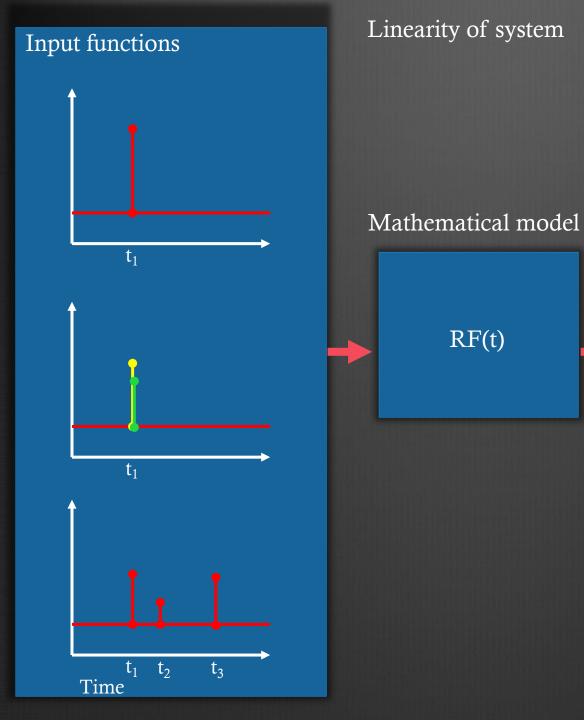
Liceraesportsoro - ansy systematoro a teletra e fuitation pretro fwidth

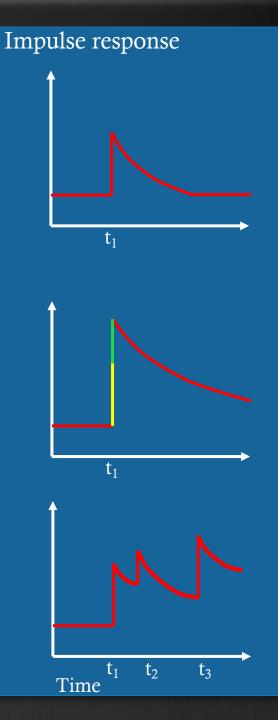




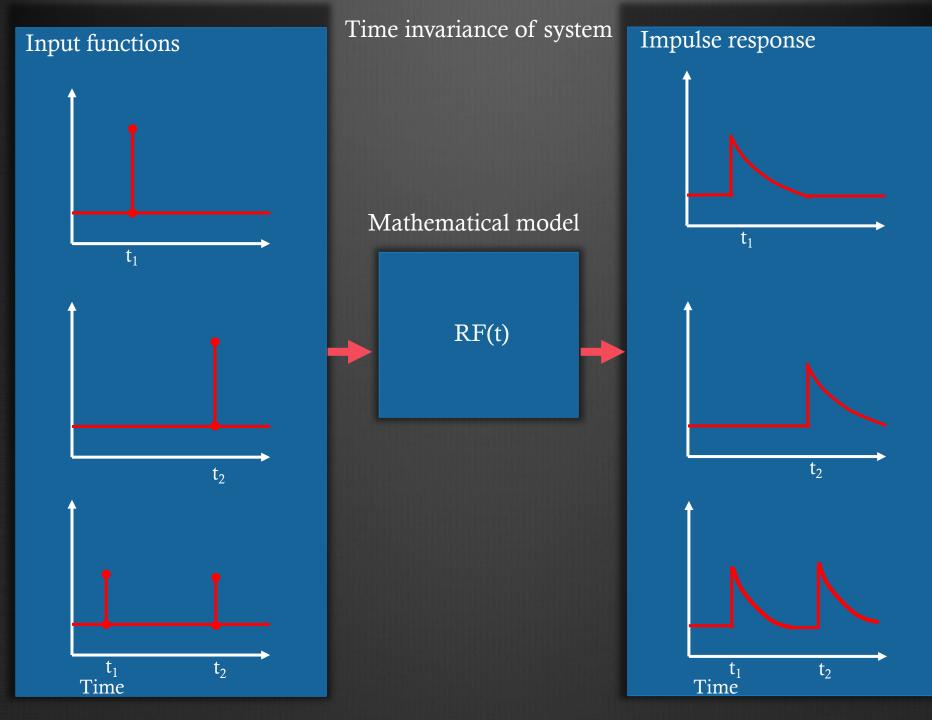
Examples



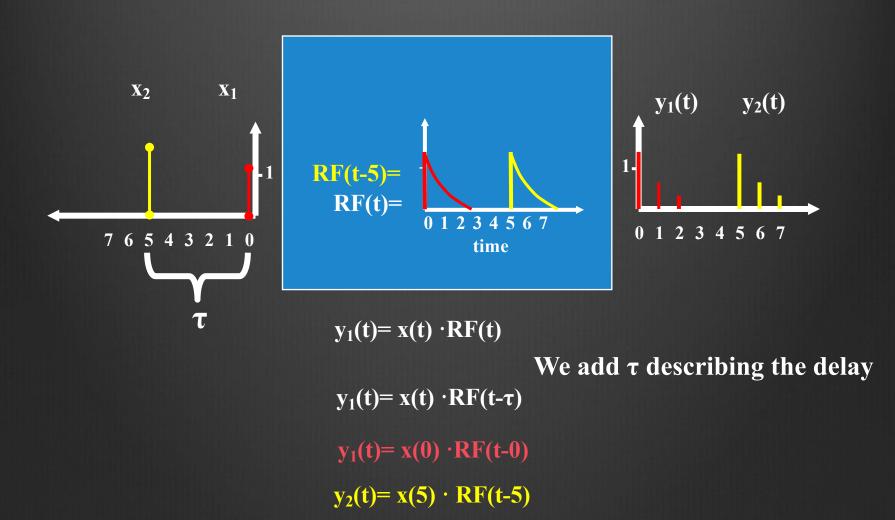


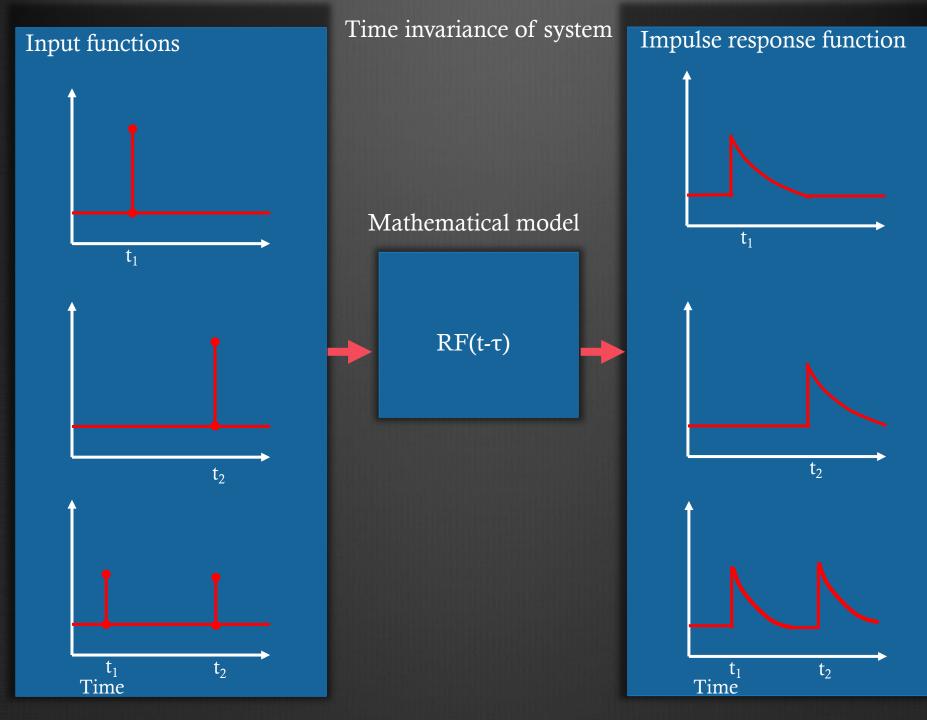


Time invariance of a system



Time delay, τ





Causality of a system

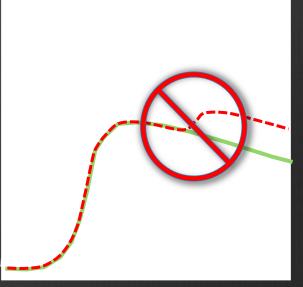
Output is only observed after an input has enter the system

X

Steady state of the system

- The physiologic parameter is constant during the measurement
- Examples: Blood flow, glucose uptake
- Consider: Duration of the measurement in relation change of parameters

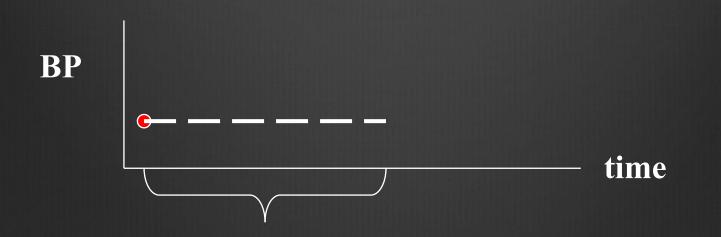
Tracer concentration



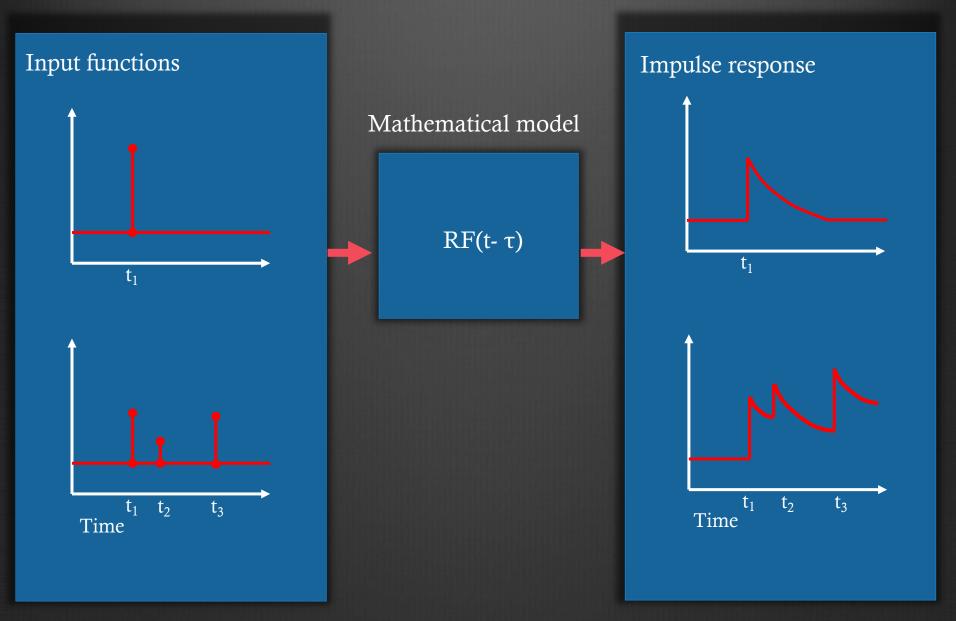
Output functions

Steady state of the system

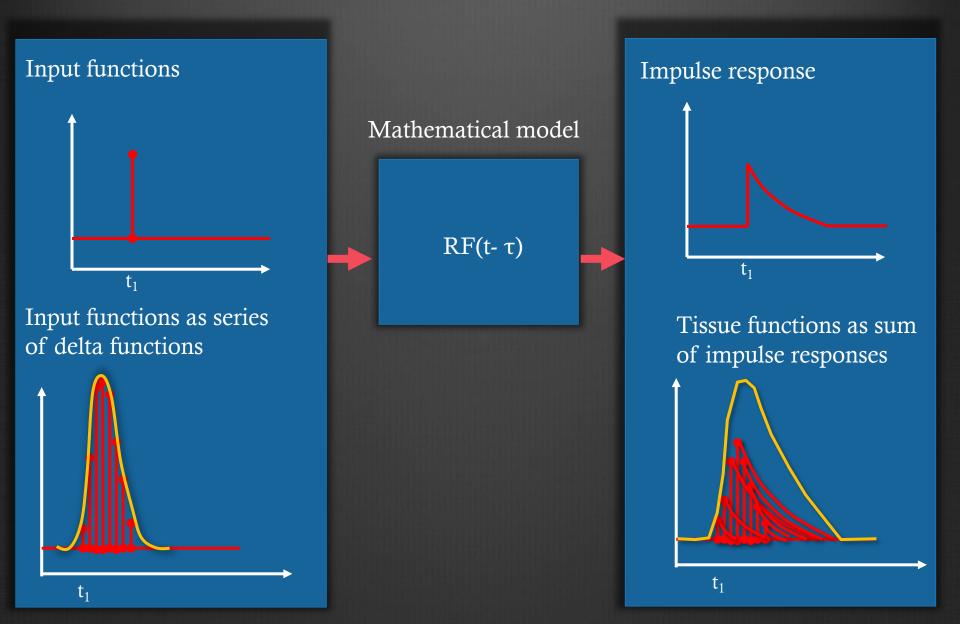
• Parameter oscillates fast compared to the duration of the measurement



Linear time-invariant causal steady-state system!

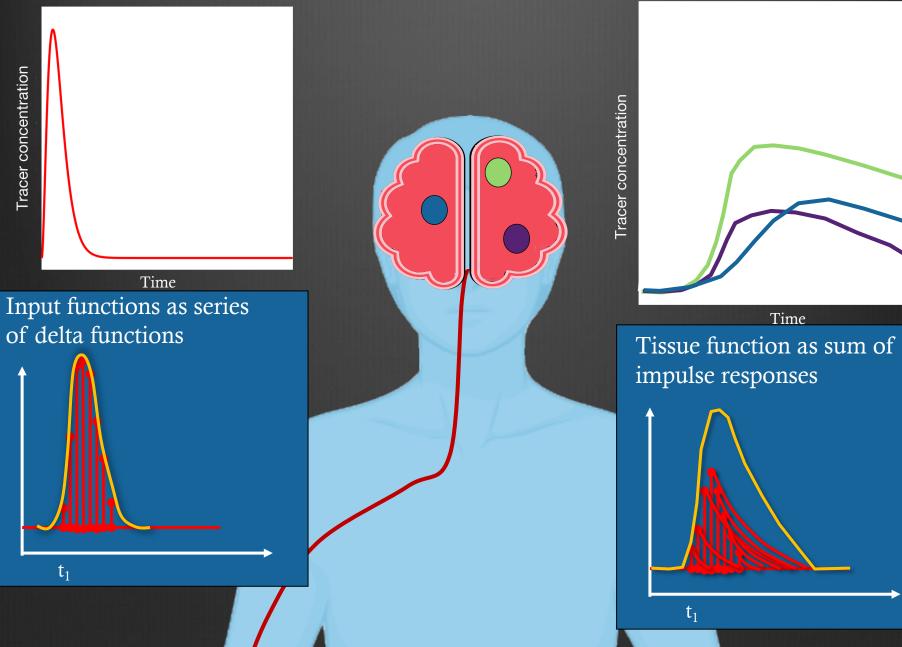


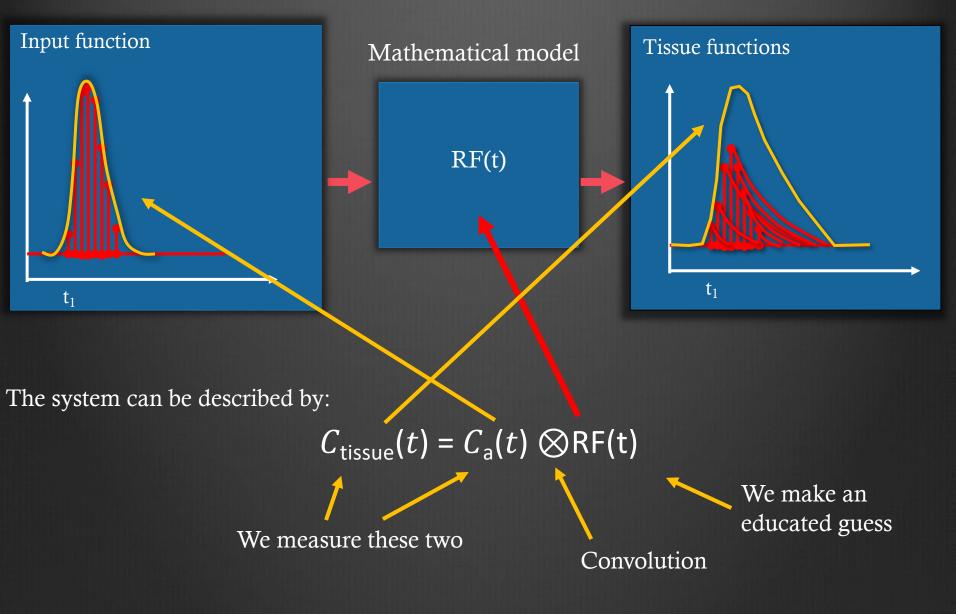
Linear time-invariant causal steady-state system!



Input function

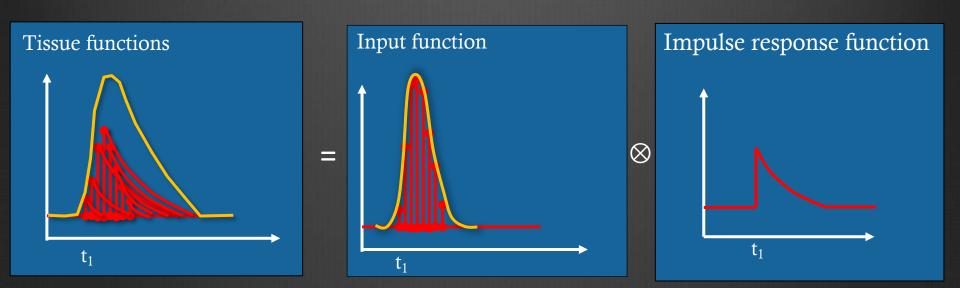
Tissue functions





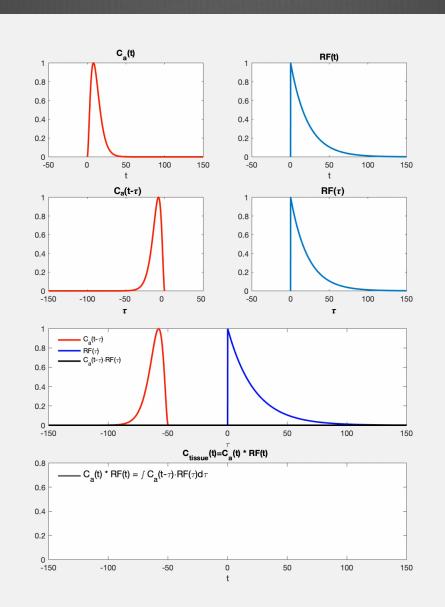
Tracer kinetic modelling is to relate C_a to $C_{tissue}(t)$ by estimating RF(t) Fundamental tracer kinetic equation

Convolution $C_{\text{tissue}}(t) = C_{a}(t) \otimes \text{RF}(t)$



$$C_{tissue}(t) = C_a(t) \otimes RF(t) = \int_{-\infty}^{\infty} C_a(t-\tau) \cdot RF(t) d\tau$$

$$C_{tissue}(t) = C_a(t) \otimes RF(t) = \int_{-\infty}^{\infty} C_a(t-\tau) \cdot RF(\tau) d\tau$$

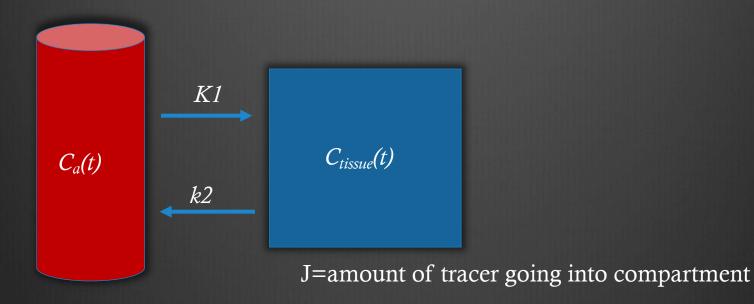


How shall we model RF(t)?

• Simple model, one tissue compartment model

How shall we model RF(t)?

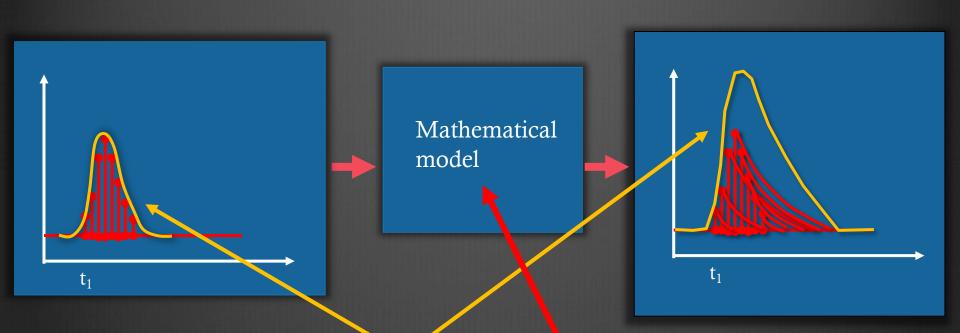
• Simple model, one tissue compartment model



 $J = K_1 C_a(t) - k_2 C_{tissue}(t)$

$$\frac{d}{dt}C_{tissue}(t) = K_1C_a(t) - k_2C_{tissue}(t)$$

 $C_{tissue}(t) = C_a(t) \otimes K_1 e^{-k_2 t} \longrightarrow C_{tissue}(t) = C_a(t) \otimes RF(t)$

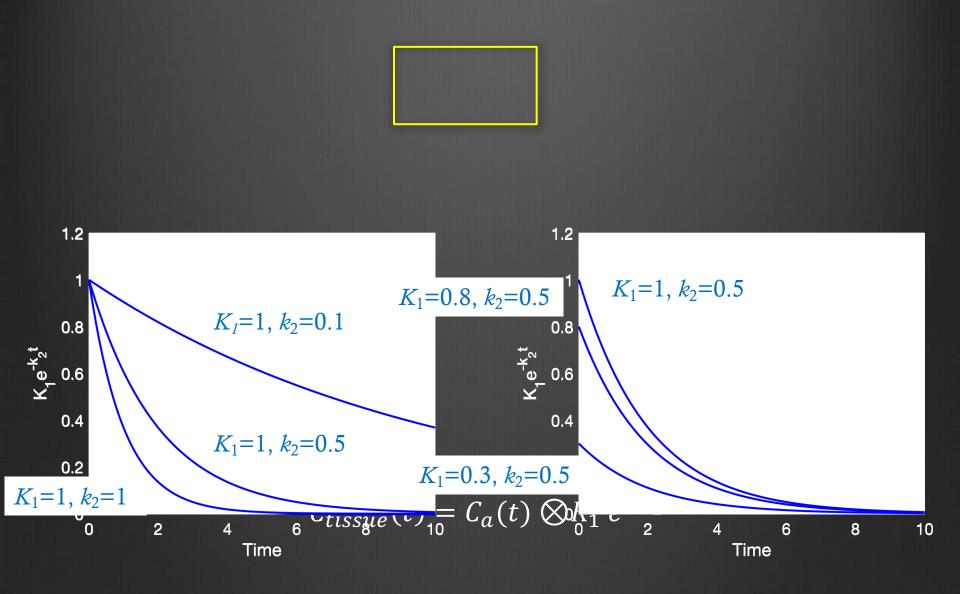


 $C_{\text{tissue}}(t) = C_{\text{a}}(t) \otimes \text{RF}(t)$

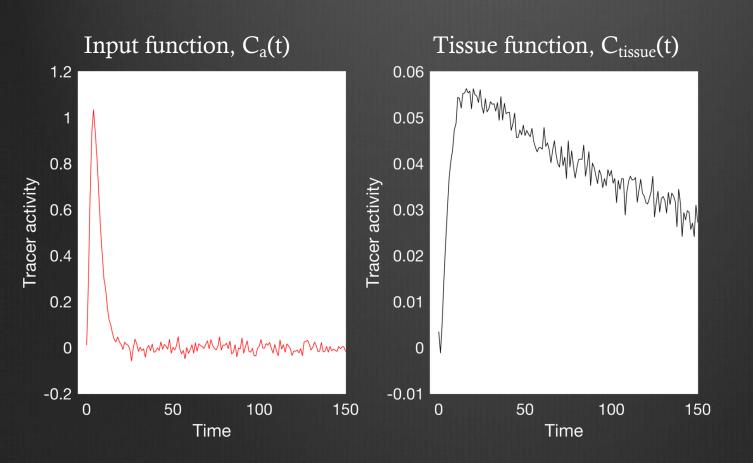
$\overline{C_{tissue}(t)} = \overline{C_a(t) \otimes K_1} e^{-k_2 t}$

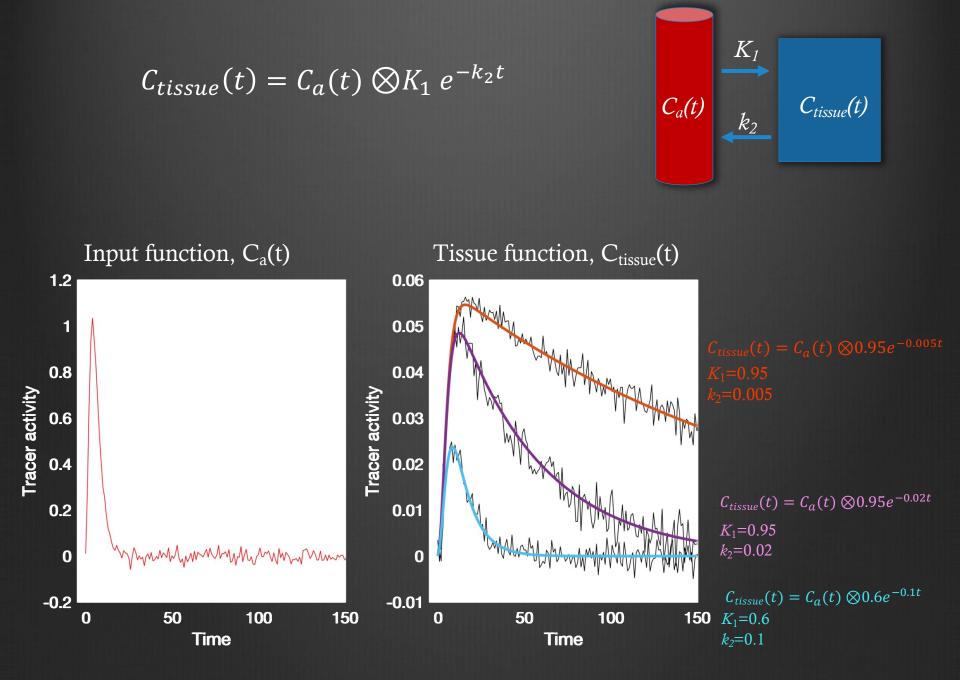
We can "guess" K_1 and k_2 from $C_a(t)$ and $C_{tissue}(t)$ curves

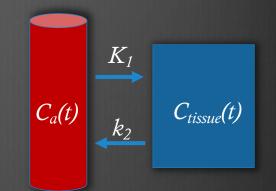
We use a computer for optimal guess

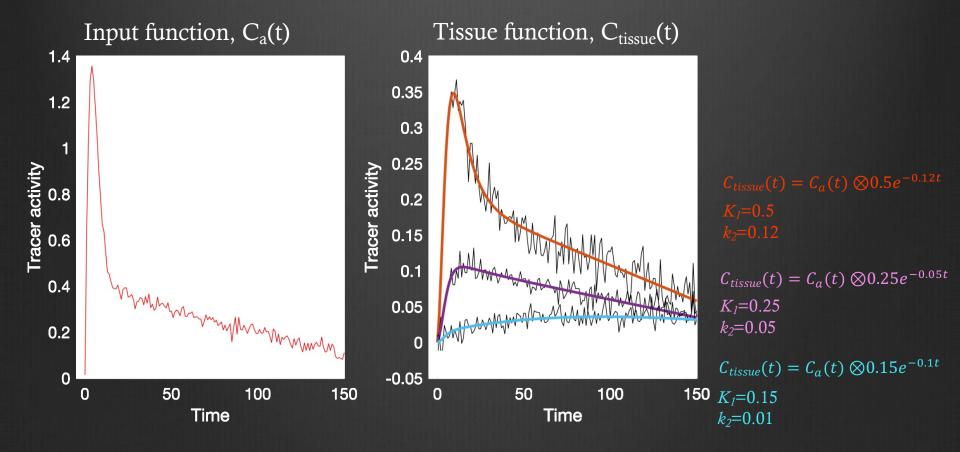


 $C_{tissue}(t) = C_a(t) \bigotimes K_1 e^{-k_2 t}$



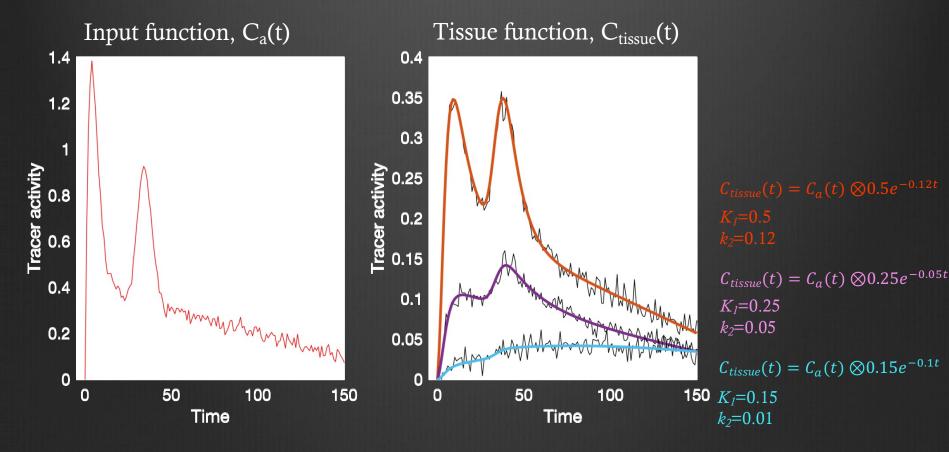






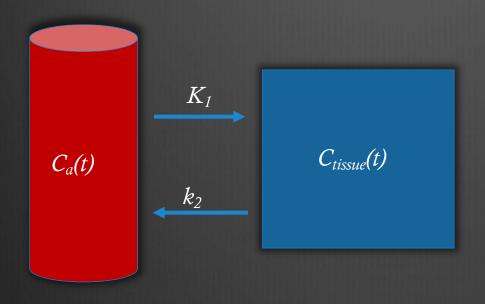
 $\overline{C_{tissue}(t)} = C_a(t) \bigotimes K_1 e^{-k_2 t}$





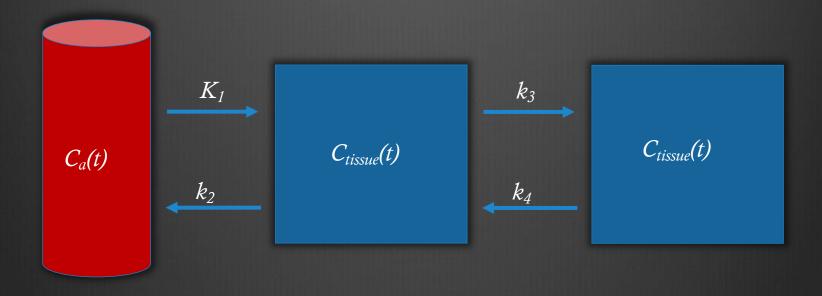
How shall we model RF(t)?

• Simple model, one tissue compartment model



$$\frac{d}{dt}C_{tissue}(t) = K_1C_a(t) - k_2C_{tissue}(t)$$

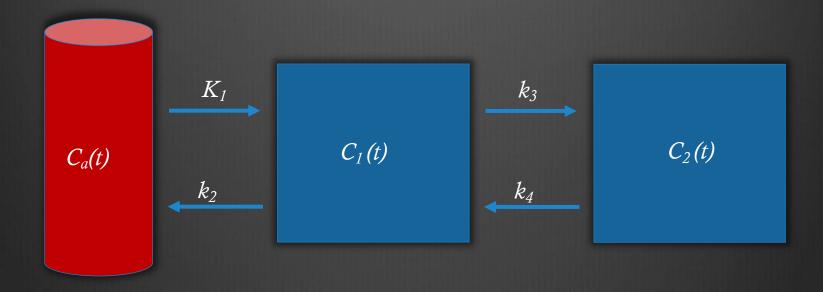
 $C_{tissue}(t) = C_a(t) \otimes K_1 e^{-k_2 t} \longrightarrow C_{tissue}(t) = C_a(t) \otimes RF(t)$



$$\frac{d}{dt}C_{tissue}(t) = K_1C_a(t) - k_2C_{tissue}(t)$$

•

 $C_{tissue}(t) = C_a(t) \otimes K_1 e^{-k_2 t} \longrightarrow C_{tissue}(t) = C_a(t) \otimes RF(t)$



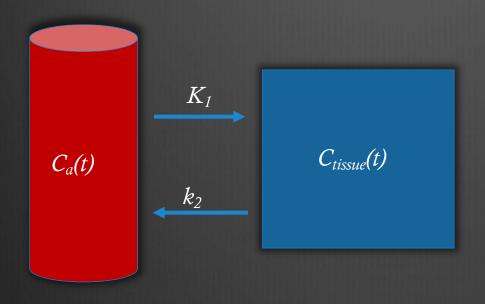
$$\frac{d}{dt}C_1(t) = K_1C_a(t) - (k_2 + k_3)C_1(t) + k_4C_2(t)$$

$$\frac{d}{dt}C_2(t) = K_3C_1(t) - k_4C_2(t)$$

•

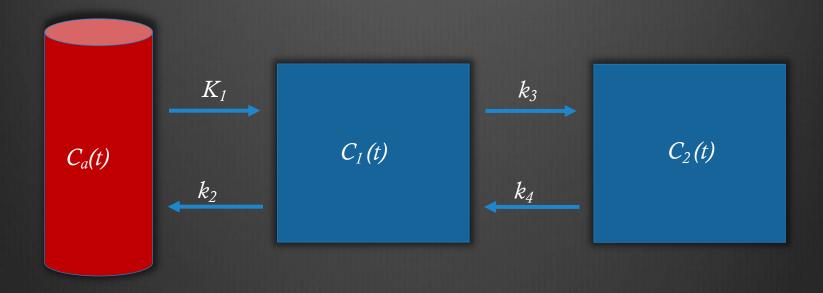
How shall we model RF(t)?

• Simple model, one tissue compartment model



$$\frac{d}{dt}C_{tissue}(t) = K_1C_a(t) - k_2C_{tissue}(t)$$

 $C_{tissue}(t) = C_a(t) \otimes K_1 e^{-k_2 t} \longrightarrow C_{tissue}(t) = C_a(t) \otimes RF(t)$

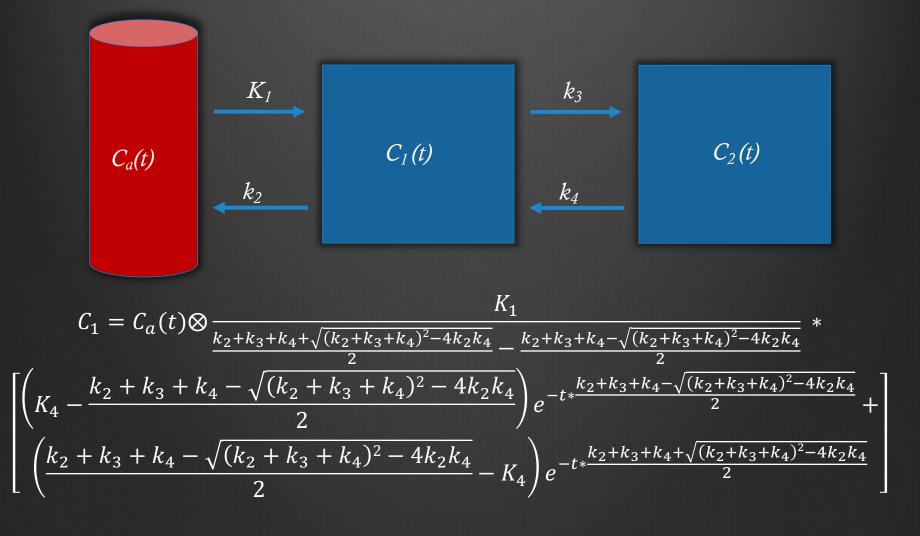


$$\frac{d}{dt}C_1(t) = K_1C_a(t) - (k_2 + k_2)C_1(t) + k_4C_2(t)$$

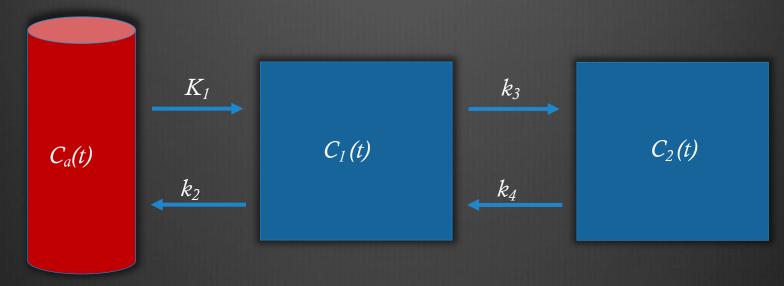
$$\frac{d}{dt}C_2(t) = K_3C_1(t) - k_4C_2(t)$$

•

 \bullet

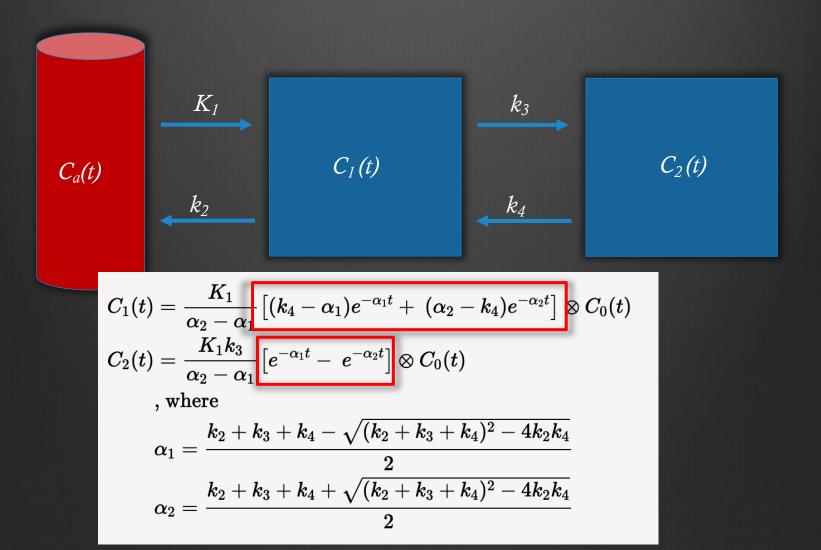


•



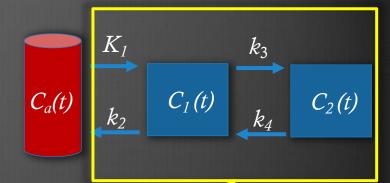
$$C_{2} = C_{a}(t) \otimes \frac{K_{1}K_{3}}{\frac{k_{2}+k_{3}+k_{4}+\sqrt{(k_{2}+k_{3}+k_{4})^{2}-4k_{2}k_{4}}}{2} - \frac{k_{2}+k_{3}+k_{4}-\sqrt{(k_{2}+k_{3}+k_{4})^{2}-4k_{2}k_{4}}}{2} \\ \left[e^{-t*\frac{k_{2}+k_{3}+k_{4}-\sqrt{(k_{2}+k_{3}+k_{4})^{2}-4k_{2}k_{4}}}{2}} - e^{-t*\frac{k_{2}+k_{3}+k_{4}+\sqrt{(k_{2}+k_{3}+k_{4})^{2}-4k_{2}k_{4}}}{2}}\right]$$

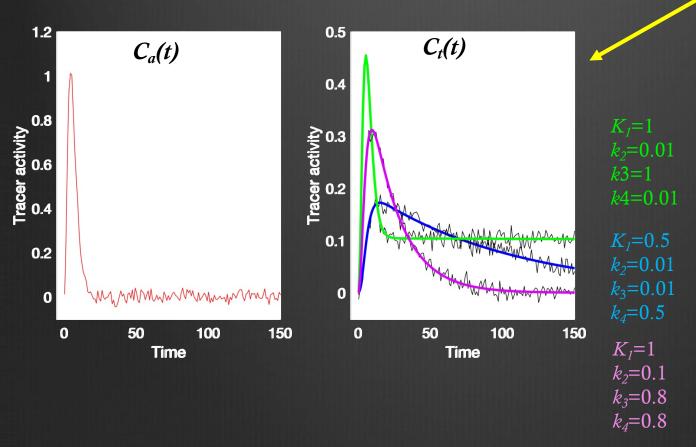
ullet

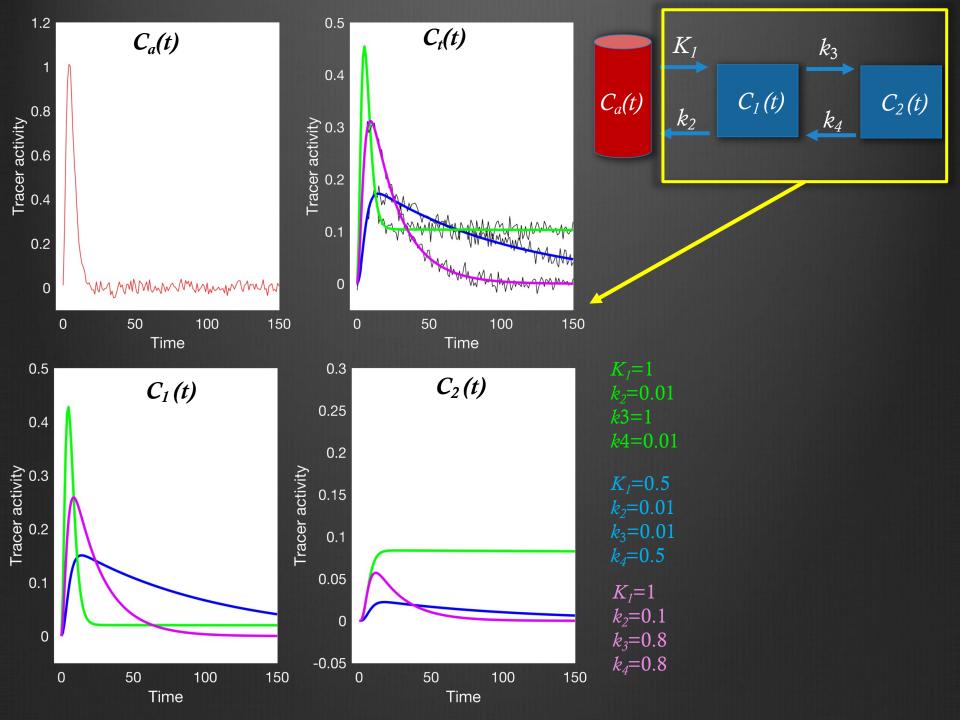


$$\frac{d}{dt}C_1(t) = K_1C_a(t) - (k_2 + k_2)C_1(t) + k_4C_2(t)$$

$$\frac{d}{dt}C_2(t) = K_3C_1(t) - k_4C_2(t)$$







Summary

- Input function, $C_a(t)$
- Tissue function, $C_{tissue}(t)$

• The input function is related to tissue function by modelling

We measure $C_a(t)$ and $C_{tissue}(t)$

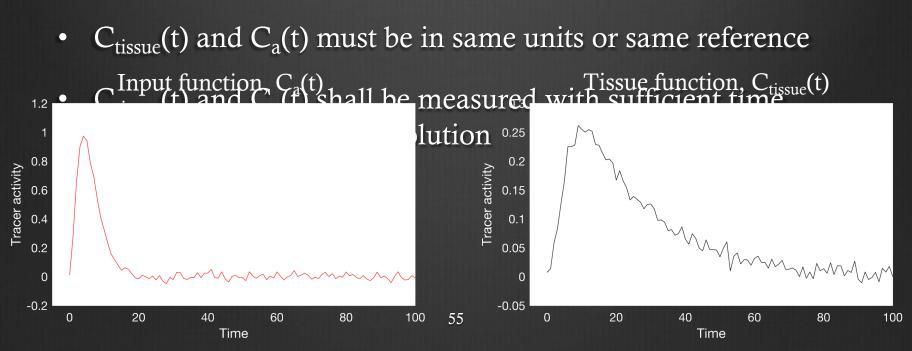
• The input function and tissue functions is related by the impulse reponse function of the system

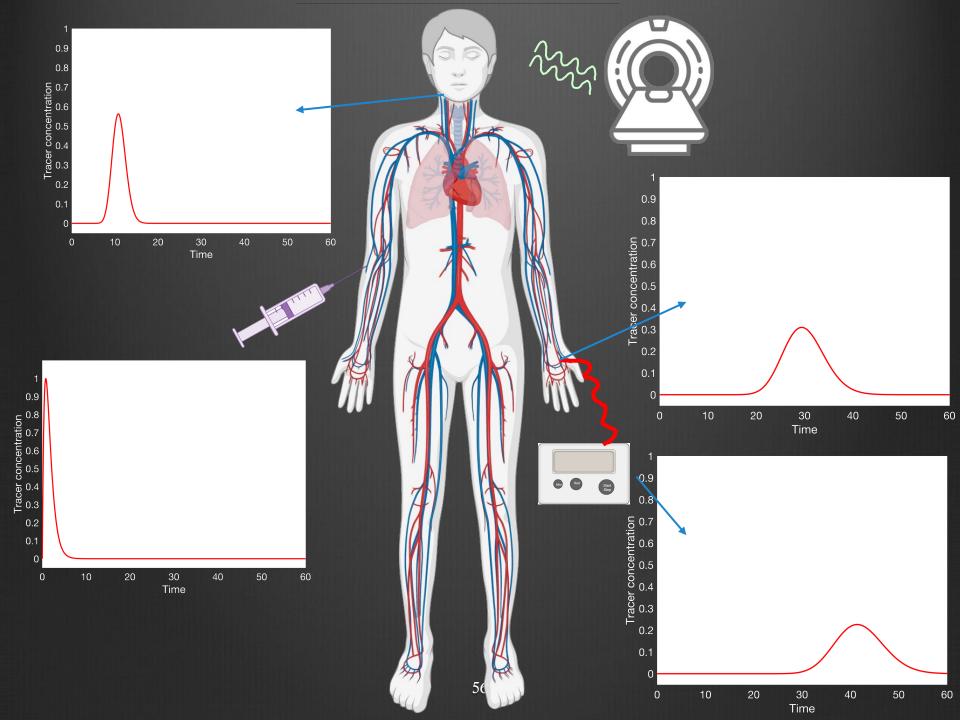
 $C_{\text{tissue}}(t) = C_{\text{a}}(t) \otimes \text{RF}(t)$

- We model the impulse response function of the system
 - Compartment model
 - Choose most simple but correct model
 - The parameters used to fit the model can be related to physiology

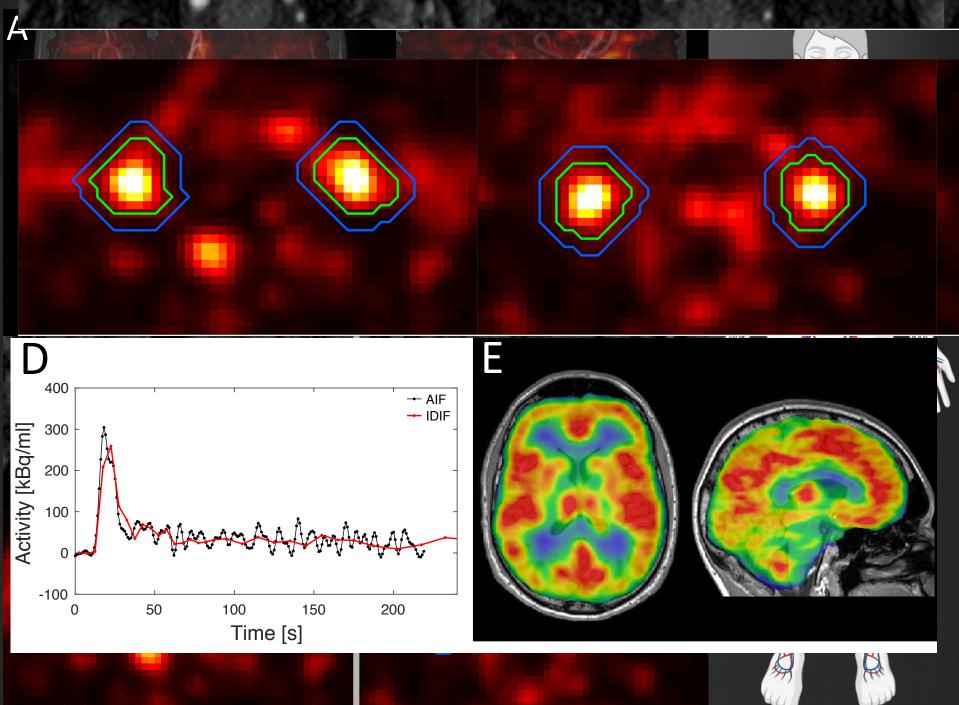
Tracer functions

- $C_{tissue}(t)$
 - Scanners
- $C_a(t)$
 - Scanners, image-derived input function
 - Blood sampling

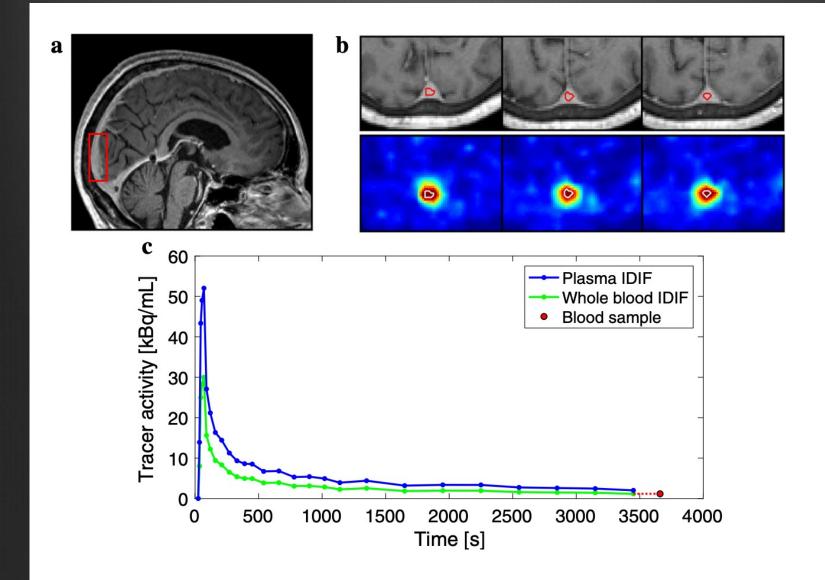




$$C_{\text{meas}}(t) = C_{\text{true}}(t) \otimes d(t)$$

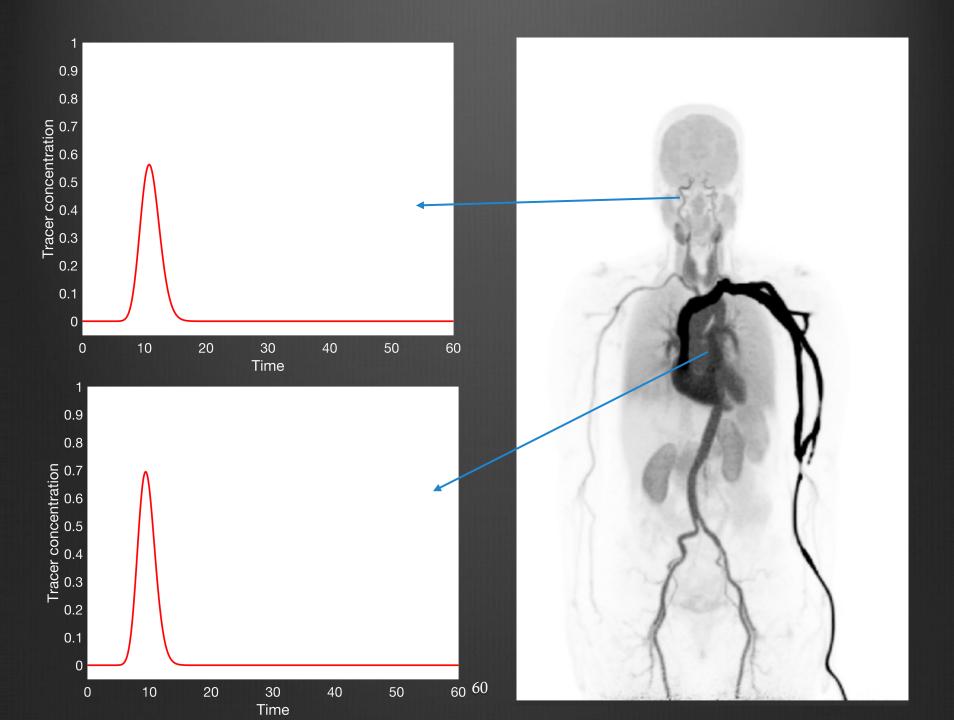


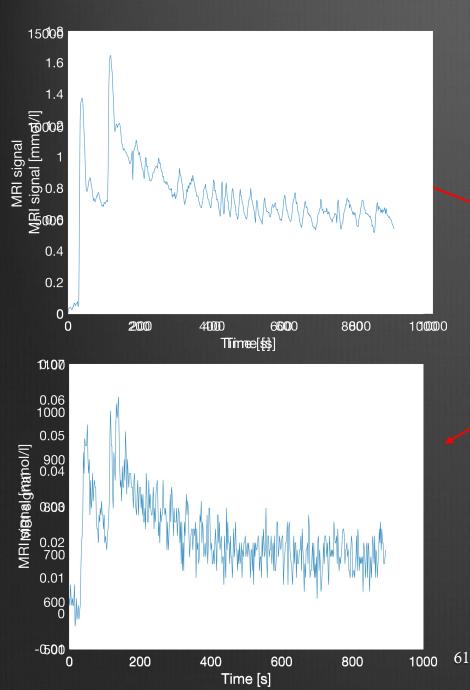
Vestergaard et al. NeuroImage 233 (2021) 117950

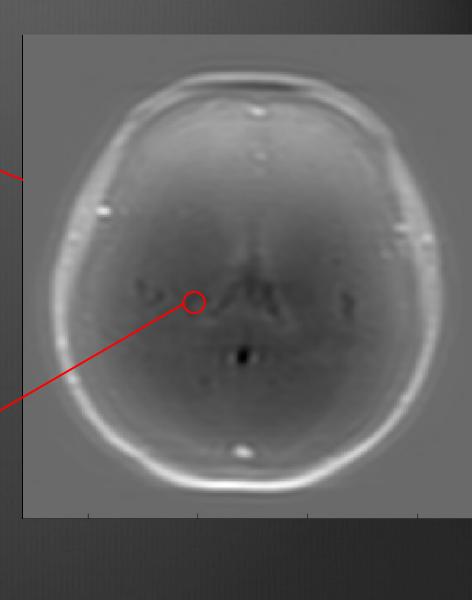


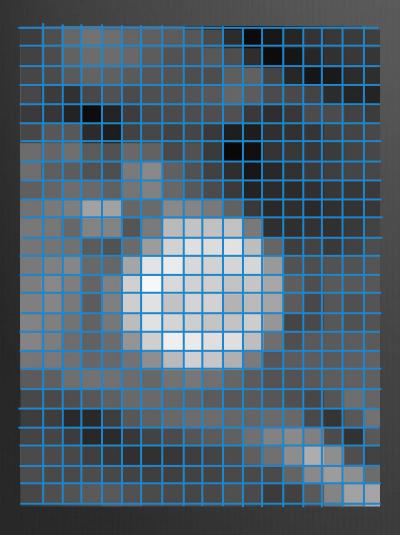
59

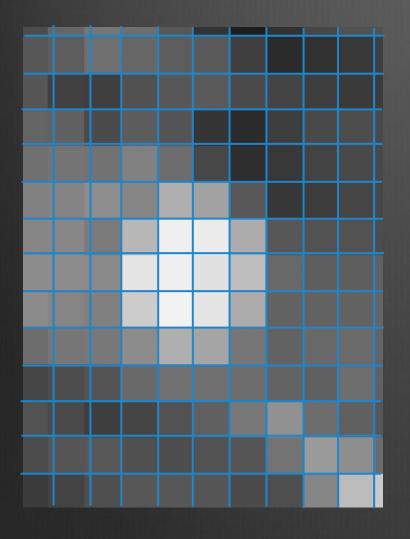
Asma Bashir et al. European Journal of Nuclear Medicine and Molecular Imaging (2020) 47:2577-2588





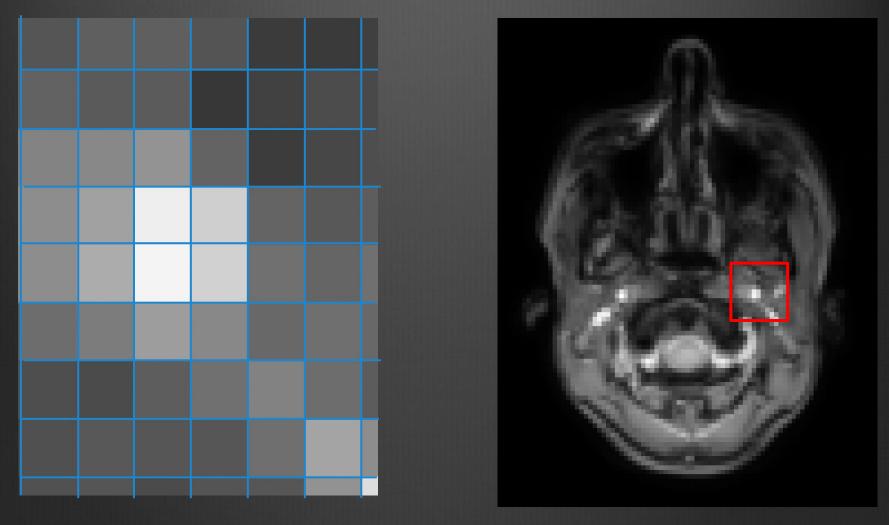




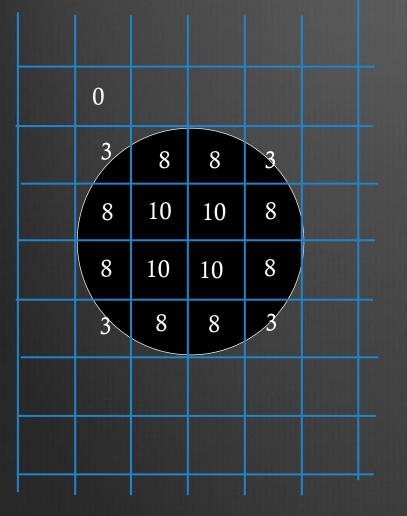




Partial volume errors

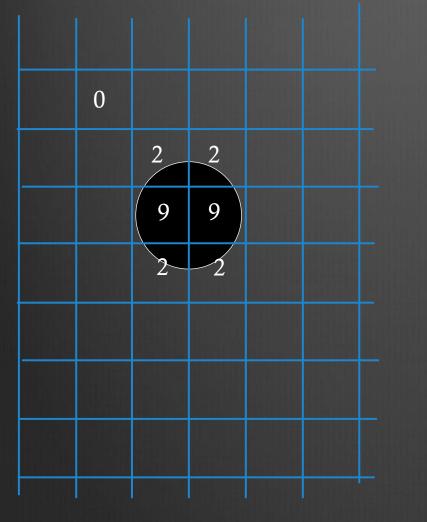


Partial volume errors

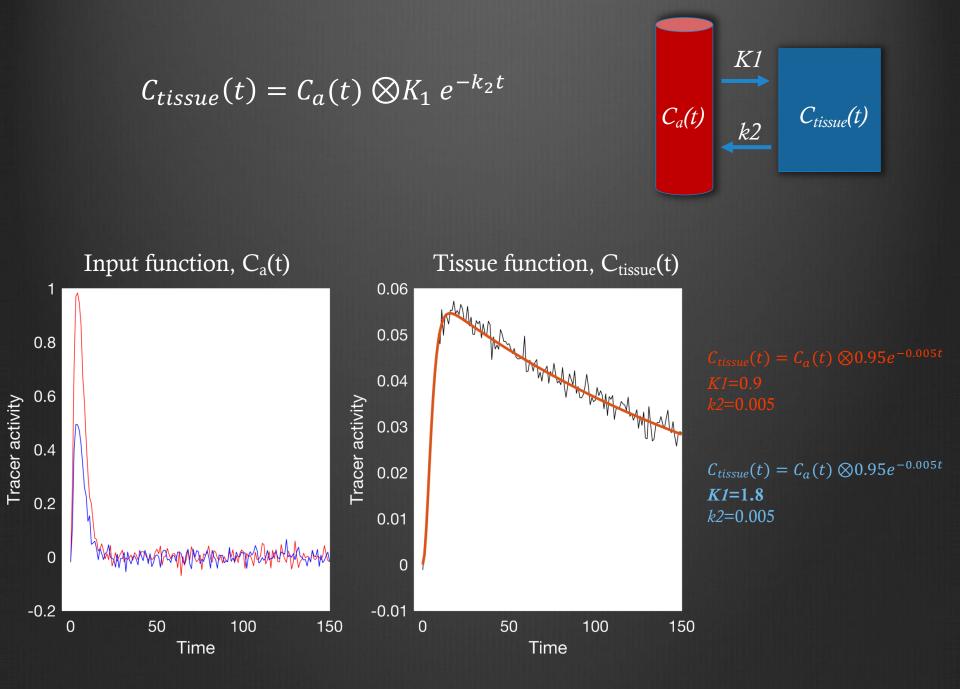


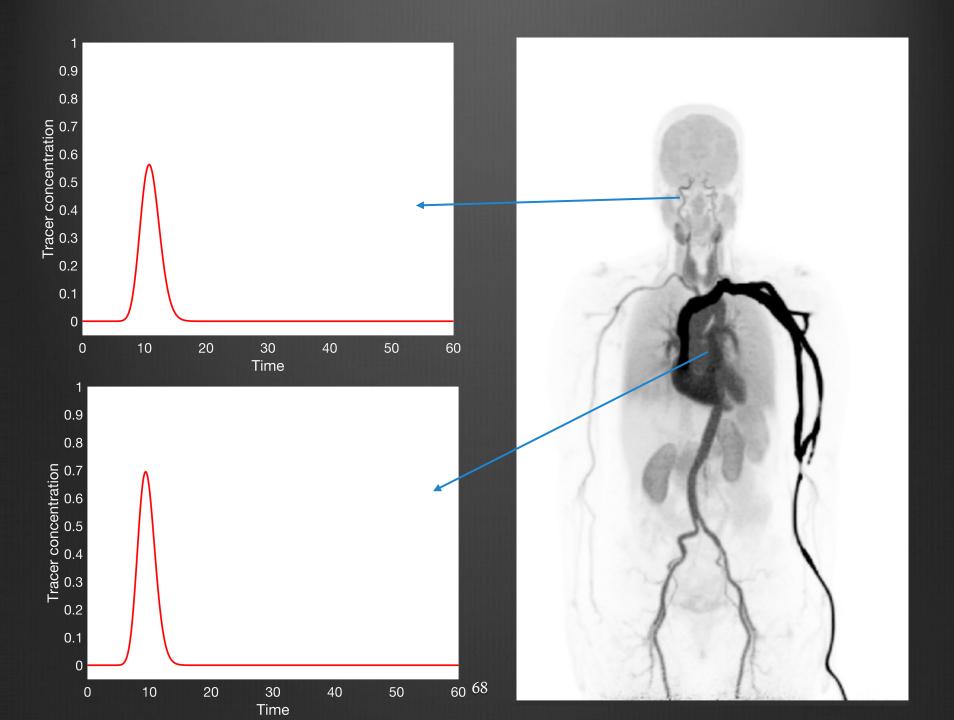
=10

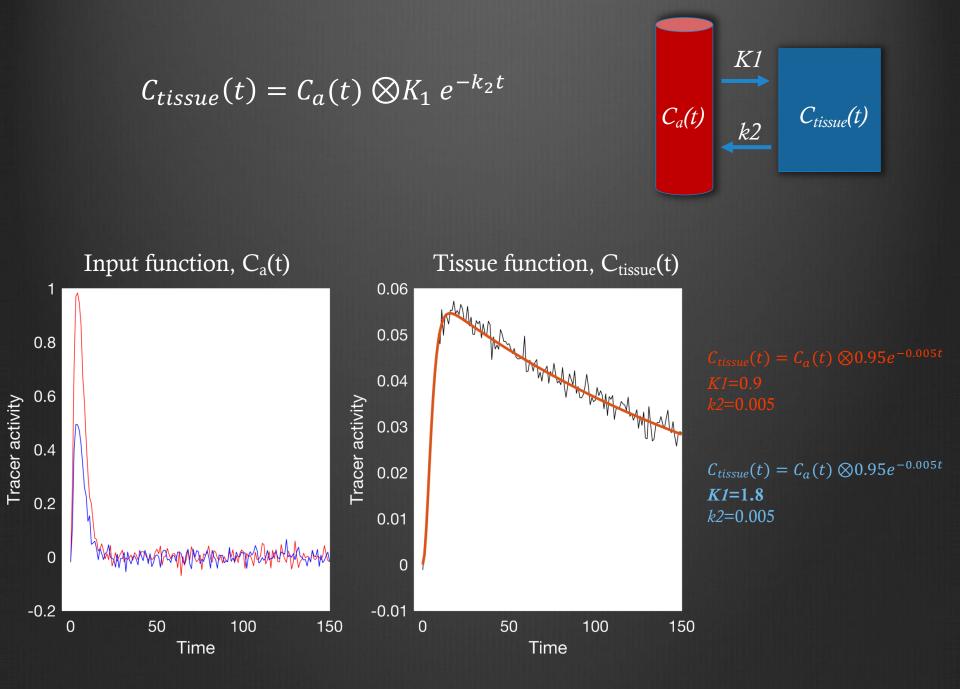
Partial volume errors



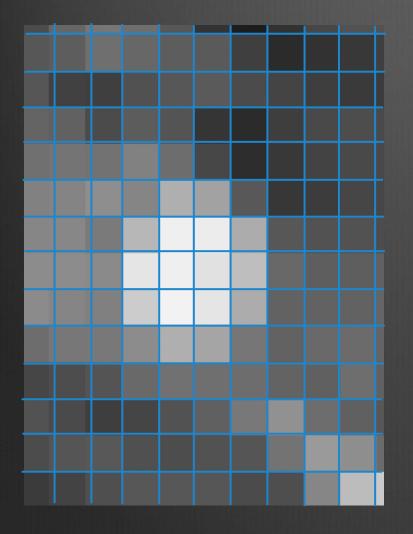
=10

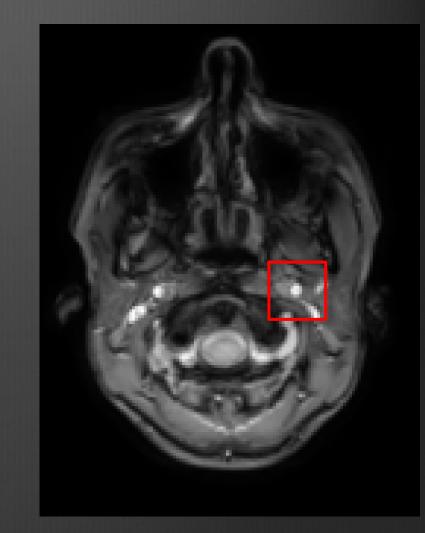






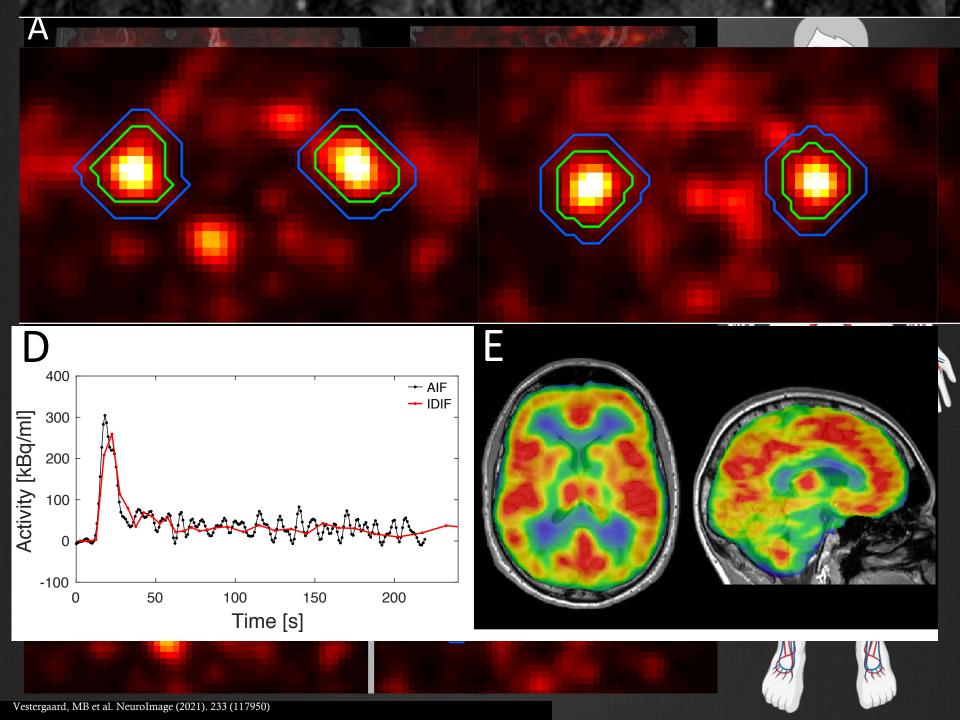
Important to measure small voxels





However,

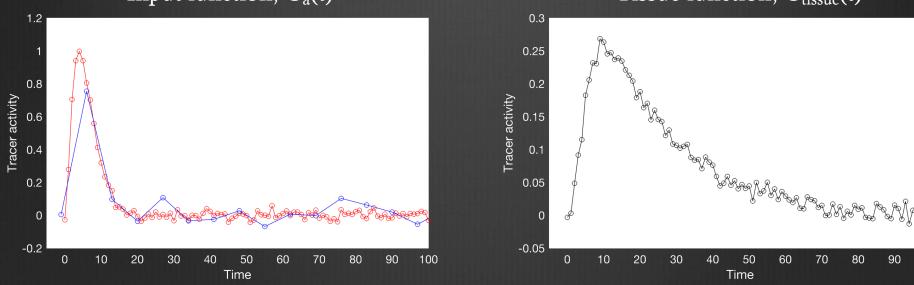
- Longer *t* gives better image quality and/or smaller voxel sizes
- Longer *t* givers poorer time resolution



$\overline{C_{tissue}(t)} = \overline{C_a(t) \otimes K_1} e^{-k_2 t}$

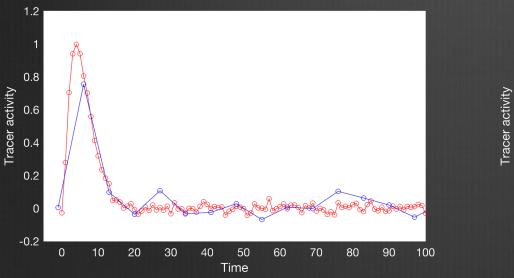
Input function, $C_a(t)$

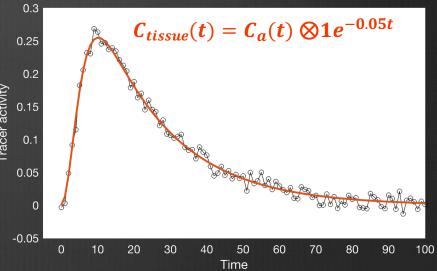
100



$C_{tissue}(t) = C_a(t) \bigotimes K_1 e^{-k_2 t}$

Input function, $C_a(t)$

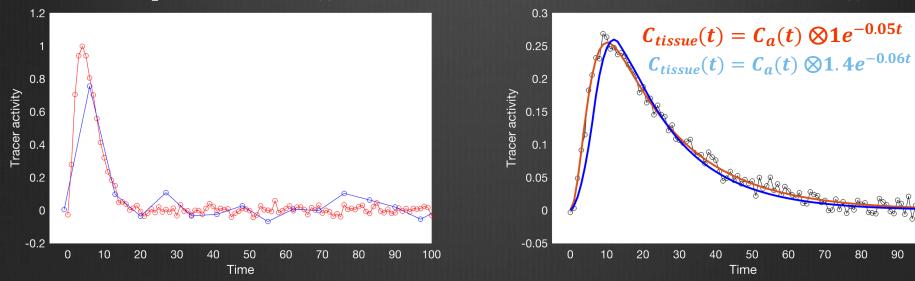




$\overline{C}_{tissue}(t) = C_a(t) \bigotimes \overline{K}_1 e^{-k_2 t}$

Time

Input function, $C_a(t)$



$C_{tissue}(t) = C_a(t) \bigotimes K_1 e^{-k_2 t}$

Input function, $C_a(t)$

1.2

0.8

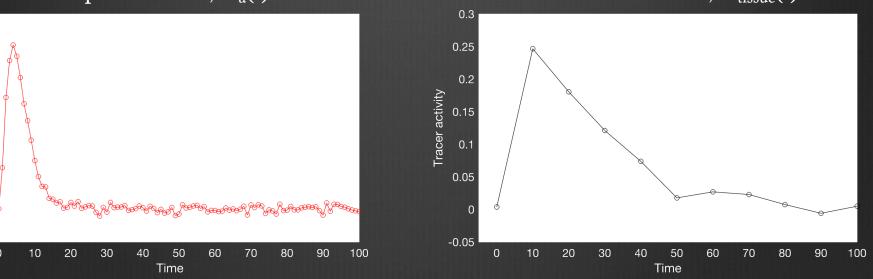
0.6

0.4

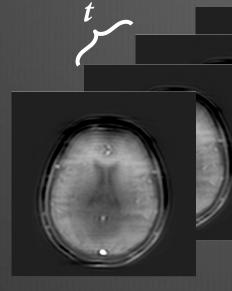
0.2

-0.2

Tracer activity



76



$\overline{C_{tissue}(t)} = C_a(t) \bigotimes K_1 e^{-k_2 t}$

1.2

0.8

0.6

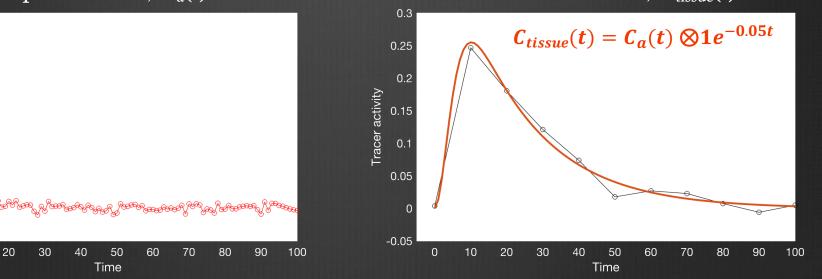
0.4

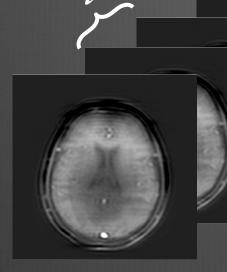
0.2

0

-0.2

Tracer activity





$\overline{C_{tissue}(t)} = \overline{C_a(t) \otimes K_1} e^{-k_2 t}$

1.2

0.8

0.6

0.4

0.2

0

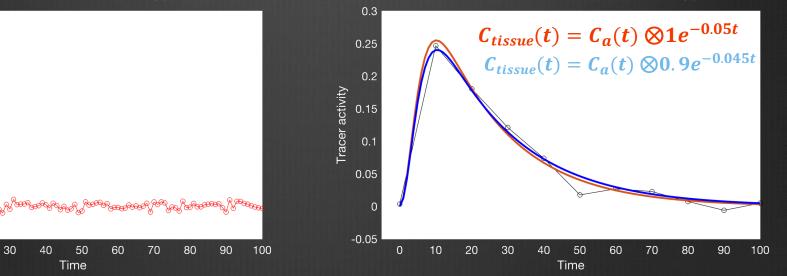
0

10

20

-0.2

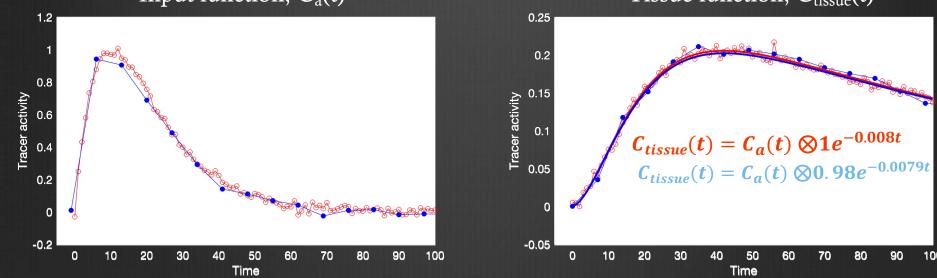
Tracer activity



$\overline{C_{tissue}(t)} = C_a(t) \bigotimes K_1 e^{-k_2 t}$

Input function, $C_a(t)$

100



Summary

- Measurement of input function
 - Same unit or reference
 - Avoid partial volume errors from image-derived input function
 - Optimal measurement of input function depends on your equipment and experiment setup
- Spatial resolution (voxel size) vs. time resolution should be considered when acquiring data
- Poorer time resolution gives better spatial resolution and better image quality
- With poor time resolution the physiological dynamic might not be captured