Computer exercises

Running IDL exercises:

- The IDL virtual machine must be installed at your own computer (from USB memory stick)
- Please as "Administrator" at your own PC/Mac copy the files from the memory stick to your own computer (it makes installation a lot faster to copy installation files):
 - o IDL Runtime environment installation file from "IDL Installers:
 - Only copy the file that fits your operating system
 - For Windows (64 bit): idl90-win.exe
 - For MAC (Intel x86 64 bit CPU): idl90-mac-x86 64.tar.gz
 - For MAC (arm64 CPU): idl90-mac-arm64.tar.gz
 - o Exercise program: "pkcourse" (total directory and place it at your desktop)
 - When finished copying release memory stick and give it to next participant
- As "Administrator" run the installation of IDL, either the .pkg file for mac or the .exe file for windows. When asked to access "License Administrator" select no, we only use IDL as an engine which does not require a license.
- When installed reboot your PC/Mac.
- The course exercises are then started by clicking at the "pkcourse.sav" file in the pkcourse directory.

MR exercise at NRU computers (Thursday afternoon):

- We are using computers at NRU (5th floor Nordfløj 2, NF2, 8057)
- Windows login (ctrl+alt+del, username: course0, password: KinCourse2025)
- We use Thinlinc to start a login at the unix system, please start that and select to connect to server "krogh.nru.dk"
- You then login to the unix system (username: course1-10, password: KinCourse2025)
- Then from a terminal "ssh -l course0 lehmann" with password: "KinCourse2025".
- Start matlab by typing "matlab" in the Xterm
- Then follow instructions in MR course description

Checking email and internet access throughout the course

• You should be able to connect to the SSID: "RegH Gaest" network. Open the login page and fill in "mobile number" and "email address", set a tick mark, and select "Tilmeld", and press "Tilmeld" once more at the new page opening. You should now be connected to the wireless network and get an SMS about that.

Monday PC Exercise 1:

Fitting one or two exponentials to a curve

Purpose

This exercise should teach you to look at a curve and guess how many exponential functions should be used to describe it. Furthermore, the purpose is to get an idea of how to fit rate-constants to exponential curves.

Questions

PK course program: Exercise 1a: Exponentials

You select a sample curve (6 different choices) and then must decide if it is a one or two exponential function. You can then enter initial values and rate constants using either the scroll bar or by entering a number in the box (remember to finish this with a "enter").

Fitting: one exponential

Here you must fit the curve seen with a one exponential function C_0 is the initial amplitude while k is the rate constant. The plot at the lower left shows the residuals (measurement - model output). The lower the absolute value of the residuals, the better is the fit.

- How/where can you read the initial amplitude on the exponential curve?
- How do you find/calculate the rate constant when you have an exponential curve/function?
- What are the initial amplitude and the rate constant of the optimal fit?
- Try to change the initial value and the rate constant to see how the curve behaves differently. How do the initial amplitude and the rate constant influence the curve-fit?
- Find different ways of estimating the rate constant for the exponential curve?

Fitting: two exponentials

Here you must fit the curve seen with a two-exponential function

Answer these questions before running the program.

- How do you separate the two exponentials when you have a double exponential curve?
- Guess the rate constant for the "fast" exponential?
- Guess the rate constant for the "slow" exponential?
- Guess the initial value for the "slow" exponential?
- Guess the initial value for the "fast" exponential?

When you input your guess of the parameters, C_i and k_i , the program will show the fitted function curve and the differences between the function and the measured data (residuals).

- Look at the function plot and the residuals plot, adjust your parameters to minimize the residuals.
- How does the change of the parameters influence the scale and shape of the function curve?

It is less obvious how and which parameters to change to improve the fit, when there are more variables. When the fitting is close, try to reveal one of the true values, and work on the remaining ones.

Hint: Deciding if one or two exponentials should be used:

- Try to click "Log" button (instead of "Linear")
- Does it indicate at the curve plot if it is one or two exponentials and why

Tuesday PC Exercise 2:Convolution and Extraction

PK course program: Exercise 1b: Convolution

Purpose

This exercise should give you an idea of how convolution is performed, what it does and what it is used for. When you have an input to a system, and observe the output from the system, you should be able to understand what the system response function does to the input.

Convolution

To remind you, a convolution looks like this:

, where $\mathbf{I}(\mathbf{t})$ is the input

function, $\mathbf{R}(\mathbf{t})$ is the impulse response function and $\mathbf{y}(\mathbf{t})$ is the output from the system.

Select an input, start out with one of the simple ones, "constant". Select a simple impulse response, e.g. Delta.

• Observe the measured output. How does it compare to the input function?

Keep the input function as "constant", select one-exponential function as the impulse response

- What would then happen to the observed system output, and why?
- How is the output generated from the impulse response at each time step?

Select a more realistic input to the system "bolus"

• What would then happen to the observed system output, and why?

Select a more sophisticated input, e.g. "bolus+infusion" and compare that to a "constant" infusion input

- How does the observed system output compare between these two inputs?
- What could you gain by using a "bolus+infusion" input compared to a "constant" infusion input?

PK course program: Exercise 1c: Extraction

Purpose

This exercise illustrates the relationship between the rate constant K_1 , permeability/flow F, extraction E and permeability surface area PS. Equations are given in upper box.

Extraction

Upper graphs: By changing the PS product and upper right box build a model of each tracer using the values given for extraction at normal flow below. Then looking at the curve in upper left box you can answer the questions:

H2O (PET flow tracer) has an extraction of 80% at normal flow 0.5 min⁻¹.

• Does K_1 have a linear response in the normal flow interval $(0 - 0.5 \text{ min}^{-1})$?

HMPAO (SPECT flow tracer) has an extraction of 60% at normal flow 0.5 min⁻¹.

- Does K_1 have a linear response in the normal flow interval $(0 0.5 \text{ min}^{-1})$?
- Compare this behaviour to the PET flow tracer?

FDG (PET glucose tracer) has an extraction of 10% at normal flow 0.5 min⁻¹.

- Does K_1 have a linear response in the normal flow interval $(0 0.5 \text{ min}^{-1})$?
- How does this tracer react to an increase in the perfusion (flow)?

Why would it be preferred to have a high extraction rate when measuring flow changes?

Lower graphs: The relationship between the rate constant, K_1 and permeability surface area product, PS, and between extraction, E and permeability surface area product, PS for a fixed flow F can be tested. You can yourself vary the flow F and inspect how a different value of the PS product varies K1 and Extraction.

Try to vary the flow and look at the left plot:

• If we want a tracer less vulnerable to flow changes, at normal flow range $(0.2 - 0.5 \text{ min}^{-1})$, what will then be the limit for PS?

Hint: If you want to do calculations you can do simplifications of the equations using that: when is very small,

Wednesday PC Exercise 3:

1-tissue model simulation, Models and rate constants

PK course program: Exercise 2: Models and rate constants

Purpose

By exploring the elementary principles of PET kinetic modelling, you will get a feeling for the compartmental model configuration (single-tissue, two-tissue irreversible and two-tissue reversible compartment models), how the individual rate constants affect the shape and scale of the time activity curves (TACs), and how to evaluate the goodness-of-fit, etc.

Models and rate constants

Seven different radio tracers can be selected. For some tracers, the injection protocol can either be bolus or infusion. **By fitting a compartmental model to various tissues, one should select the model configuration first.** The option: 2 parameters, represents single-tissue compartment model; 3 parameters two-tissue irreversible model; and 4 parameters two-tissue reversible model. The **input curve** is shown in the lower left panel, and **TAC curve** is given in the lower right panel. Below the residual plot, **Chi-Squared** is given, which is the sum of the variance-weighted squared differences between data and fit. $\chi_v^2 = \chi^2 / v$, where v is the no. of data points. By minimizing Chi-Squared value (the residuals in the plot), one can get a model that better fits the measured TACs.

Select one tracer and one tissue curve and guess the model order. Try to adjust the parameters (K1, k2, k3 and k4)

- How does the curve change when K1 is increased and why?
- How does the curve change when k2 is increased and why?
- How does the curve change when k3 is different from zero (K1, k2 and k4 is unchanged) and why?
- How does the curve change when k4 is different from zero and why?
- Try another "Tissue curve" for same tracer, is it always same model order that are optimal?

Try the exercise with other tracers

• Try to find optimal model for different tracers

Try to vary noise in the dataset

- How does the noise influence the fitting, the residuals and Chi-squared values?
- If more noise can you then precisely decide model order (e.g. for RAC)?

Try with different injection schemes:

- What happens if you continuously inject a constant dose?
- Why could it be a good idea to do a bolus-injection scheme?

Finally, if more time enable the advanced options and select different blood volume (BV) fractions:

• What happens if blood volume fraction is increased?

Thursday PC Exercise 4: Linearization and Reference tissue modelling

The distribution volume

Dı	ır	n	^	c	Δ
Рι	41	ν	u	3	u

This exercise should give you an idea on how different linearization's can be used when quantifying PET studies.

Patlak(-Gjedde) plot (irreversible models)	
Remember the linearization in Patlak-Gjedde (from page 47-48 in the Pharmacokinetic book, can be downloaded from course material, Manual-PKC07-1):	
The solution to a two-tissue compartment model is: . From this analytic solution	on
two tissue compartment model can be written with the following rate constants:	
This can be written as two differential equations:	
Linearization of this leads to the following equations:	
The measured signal from the brain scanner is:	
From the late time points (stable) where can be assumed to be close to zero, we get the following approximation:	
, and therefore by substituting and :	
,	
Further by dividing C_t by C_a gives:	
From the fitted line we therefore have:	
The metabolic rate is therefore the same as κ ₂ (the slope)	

is therefore the same as κ_1/κ_2 (the intercept)

6

Logan plot (reversible models)

Remember the linearization in Logan (from page 49-50 in the Pharmacokinetic book, can be downloaded from course material, Manual-PKC07-1):

For a decoupled two-tissue compartment model: $\frac{dC_t}{dt} = V_t \kappa_2 C_a - \kappa_2 C_t$ and the distribution volume is $V_t = \frac{K_1}{\kappa_2}$ and

$$\kappa_2 = \frac{k_2 k_4}{k_2 + k_3 + k_4} \,.$$

Linearization in the Logan approximation: $\frac{\int\limits_{0}^{t}C_{t}\,d\tau}{C_{t}}=-\frac{1}{\kappa_{2}}+V_{t}\frac{\int\limits_{0}^{t}C_{a}\,d\tau}{C_{t}}$

The slope of the fitted line therefore describes the distribution volume.

Questions

Repeat the exercises with different setups:

After having selected the linear methods the user interface is open. There you can select radio tracers and the injection paradigms at the left. It is also possible to change the amount of noise in the data. Further it is possible to select which region you want to model.

You can play with it but try at least the following setup (NC – Normal controls, PT – Patients):

- FDG dataset cortex region/white matter
 - Try bolus and infusion does it make any difference
 - o What about noise in the dataset (Try "Med", "Run 250 fits", "Calculate Both") what do you see?
 - o "Multiple Fit Statistics" tell you the estimated Slope (Average, Stddev, and COV (Normalized stddev))?
- Raclopride different regions
 - o How does it fit, which approximation works best, why?
 - o How does it depend on the time points selected for fitting?
 - What about noise in the dataset?
 - O Use "Reveal true Parameters" to compare to the "grand truth"
- NMPD different regions
 - o How does it fit, which approximation works best, why?
 - o How does it depend on the time points selected for fitting?
 - What about noise in the dataset?
 - O Is it a reversible or irreversible tracer?
- Patient comparison
 - Try to include a patient comparison
 - Vary the k3 deficit
 - o Vary the noise
 - O Vary the length of the available time series
 - o Which variable to look into when identifying a deficit: Effect Size or Ratio of Means?
 - O Does it vary between substances?
 - O With noise do a "Run 250 fits"
 - o "Multiple Fit Statistics" tell you "Effect size" (Cohen's d (mean(NC)-mean(PT))/stddev(NC+PT)), and "Ratio of Mean" which because it is a k3 deficit should tell you how much deficit you have selected.
 - o Is it possible to identify a difference between NC and patients?

PK course program: Exercise 5: Reference Tissue Models

This exercise will give you an idea on how to investigate the use of reference tissue model (RTM) approaches for estimating receptor binding potential (BP_{ND}) and how to examine the assumptions inherent to these methods. RTM presented here is designed for **reversible** PET radiotracers. The advantage of using RTM is that it avoids the need for arterial blood sampling.

You can play with it but try at least the following setup:

- FMZ dataset reference region pons and target region cortex
- Raclopride dataset reference region cerebellum and target region basal ganglia
- DASB dataset reference region cerebellum and target region dorsal midbrain (try other regions too)
- PIB dataset reference region cerebellum and target region cortex
 - How does it fit, which approximation works best, why?
 - o How does it depend on the time points selected for fitting?
 - What about noise in the dataset (try to press calculate several times with noise in the dataset)?
 - Which injection protocol is optimal?
 - O Use "Reveal true Parameters" to compare to the "grand truth"
 - O What happens if you select another reference region?
 - What about fixing the k2R value?
 - Is it problematic to estimate $R = \frac{K_1}{K_1}$?
 - o Try to vary t* (start time for fitting), are the parameters then better estimated?
 - o Make a comparison to a patient with different degrees of deficit
 - Use the "Run 50 fits" to do a patient group comparison with different amount of noise in the data,
 "Multiple Fit Statistics" report: Mean(stddev) and COV (normalized stddev by mean), which makes it feasible to compare variance at outcome parameters.
 - o And comparison to patients, then Effect size ((mean(NC)-mean(PT))/stddev(NC+PT)) could be compared between models. Try to vary t* (start time for fit) for the Logan model.

Friday PC Exercise 5: Parameter estimation

PK course program: Exercise 3: Parameter Estimation

Purpose

This exercise is similar to exercise 2 'Models and rate constants'. However, it further explores the elementary principles of parameter estimation of the micro-parameters: compartmental model rate constants, and the macro-parameters: e.g. volumes of distribution. Instead of manually searching for the proper rate constants, a non-linear least-squares optimization is used starting with the initial values of your choice. The initial parameter values must be chosen carefully, since there is a risk that the parameters will be caught in a local minimum.

Questions

- Select H₂O as the Radiotracer
 - O Study the fit, residuals and the estimated parameter values
 - o Try different noise level, how does the noise influence the goodness-of-fit, etc.
 - O Which model fits the best?
- Select FMZ (Cortex region). Select noise level Low or Med or High. Then you can enable Run Multiple Fits.
 - Try both single-tissue compartment model and two-tissue reversible compartment model. Which one fits best?
 - O Run multiple fits 25 times (default). Study the plot of K_1 vs. Vt. Look at the bias and variance (Mean and SD) in the micro-parameter estimation (K_i). Look at the bias and variance in the macro-parameter estimation too (V_{nd} , V_s , V_t , and BP_{nd}). Also pay attention to the goodness-of-fit and the precision (COV) of the parameter estimates. Try to vary the model order and look at the Vt estimate.
- Select other tracers or regions and keep playing. Which parameters, in general, can be estimated with greater precision, micro-parameters (K1, k2, k3, k4) or macro-parameters (Vt)?

PK course program: Exercise 6: Optimize Infusion Protocol

Purpose

If is possible to achieve steady state conditions of tracer in plasma and tissue it is not needed to do kinetic modelling. This could be achieved by starting a constant infusion using a pump and then just wait until steady state conditions is present, but because of radiation dose and decay of radioactivity it is often not feasible. It is therefore essential to achieve steady-state conditions in blood as well as in brain regions as fast as possible!

A way to achieve faster steady-state conditions is to give a bolus and then shortly after that starting a constant infusion. In this exercise it is possible to test different ratios between the given bolus tracer dose and the injected amount of radioactivity per hour for the rest of the experiment.

Questions

- Select FMZ as the Radiotracer
 - Study the curves, all tracer is given as "All bolus"
 - o Then try to change the way tracer is given to "All infusion"
 - What is the difference (you can select to change length of experiment in "Scan duration")?
 - o Is it possible to optimize ratio between "bolus" and "infusion" so steady-state in all regions and plasma is achieved at some earlier time point?
 - O You can show ratio curves between reference and target region by selecting that.
- Select RAC as the Radiotracer
 - Is it possible to achieve steady state for that tracer?
 - O At same time point?
 - Is it problematic that it last 50-60 minutes before steady-state is achieved (half-life for tracer is 20 min)?
- Then select DASB as the tracer
 - o Is it possible to achieve steady state?
 - o For all regions (discuss high/low binding regions)?
 - o Would there still be radioactivity left when steady-state is achieved?