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[18F]FDG PET

55 year-old-man with night
sweats, and weight loss of 5 kg
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[18F]FDG PET

55 year-old-man with night
sweats, and weight loss of 5 kg

Biopsy show lymphoma. After 6 |
cycles of chemotherapy this is his;
PET/CT scan: 5
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[18F]FDG PET

The introduction of [18F]FDG PET/CT has been a game changer
in cancer diagnostics the last 25 years

But why is it so good?
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The Warburg Effect

Cancer cells can change from oxidative
phosphorylation to lactate production.
Thereby glycolysis can be increased up to
200 times even at normal oxygen levels
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FLOW OF ELECTRONS ATP PRODUCTION

Glucose metabolism

» Glycolysis requires no oxygen "‘”"’
- Only little energy production Tf“/ S -~
« Oxygen consuming =y
breakdown of glucose through @G——— %
Krebs cycle and electron "f i ﬂ,
chain reactions leads to high
energy production = Y AN
o cycle }_‘~+ 4co,
« Pyruvate can be transformed e a4 \5}0
into lactate, which keeps S | (Toah
NADH levels stable o TN

msrer,

chemiosmosis % =M
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[18F]FDG PET
The introduction of [18F]FDG PET/CT has been a game changer in cancer

diagnostics the last 25 years

Actually, [18F]FDG PET/CT is so good that you don‘t need to do
quantification
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Blobologi:

FDG PET/C ole body imaging — hot spots correlate to
quantitativ easures

Thoracic Radiology
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[18F]FDG PET
The introduction of [18F]FDG PET/CT has been a game changer in cancer

diagnostics the last 25 years

Actually, [18F]FDG PET/CT is so good that you don‘t need to do
quantification

Temporal reduction in frontotemporal
dementia (semantic dementia)

No need for quantification when looking for regional
differences or hotspots
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Quantitation of regional metabolic rate of
glucose - rMRgic

33% reduction in CMRglc
during ketone infusion
— global changes
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Glucose measurements methods

1. Global measurements
« Using global blood flow measurements and
Fick”s principle

2. Regional measurements using imaging
« Deoxyglucose method in animals
* Fluoro-deoxyglucose method in humans
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THE FICK PRINCIPLE

“Everything that goes in and doesn’ t come out again
has been taken up by the organ”

Uptake = F(C,-C,)

F=blood flow
C, and C,= substrate concentrations in arterial and
cerebral venous blood

F can be measured by the Fick Principle by using an inert gas
(Xenon)
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Disadvantages: Very invasive!
Catheter in the internal jugular vein is necessary to measure cerebral venous
blood
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Catheter in the internal jugular vein
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Advantages: Almost everything can be measured
Ex: Brain Carbohydrate Metabolism after 3.5 Days of Starvation

Net Uptake (umol/g/min)

0,35
p<0,05 (n: 9)
0,3 -
m Control
0,25 1 O Starvation
0,2 -
p<0,05
0,15 -
0,1 -
0,05 -
| I
0 T T T -_| T
GLU b-OHB AcAc PYR C
-0,05 -
-0,1

Hasselbalch et al., JCBF, 1994
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The deoxyglucose method

Journal of Newrochemistry, 1977, Vol 28, pp. 897916, Pergamon Press, Printed in Great Britain.

THE [**C]DEOXYGLUCOSE METHOD FOR THE
MEASUREMENT OF LOCAL CEREBRAL GLUCOSE
UTILIZATION: THEORY, PROCEDURE, AND
NORMAL VALUES IN THE CONSCIOUS AND
ANESTHETIZED ALBINO RAT!
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Mational Institute
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Abstract—A method has been developed for the simultaneous measurement of the rates of glucose
consumption in the various structural and functional components of the brain in vive. The method
can be applied to most laboratory animals in the conscious state. It is based on the use of 2-deoxy-D-
[“Clglucose ([**CIDG) as a tracer for the exchange of glucose between plasma and brain and its
phosphorylation by hexokinase in the tissues. ['*C]DG is used because the label in its product,

A
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The deoxyglucose method
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Blood BBB Brain / tumor
Kl hexokinase CO 2
Glu . > Glu ——  Glu-6-P +
(Ca) k2 (Ce) K3 (Cm) H20

A

Kl * hexokinase
DG " DG —— DG-6-P %
(Ca*) k2*  (Ce*) K3®  (Cm*)

Deoxyglucose is not a substrate for further
glycolysis and thus remains trapped in the
tissue 7
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Compartment model of Deoxy-Glucose metabolism

Brain / tumor Brain / tumor
Blood (not metabolized) (metabolized)
K1* k3%
> >
DG DG DG-6-P
K2 * (k) G-6
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CMRglc measured by 1 time point =
“the autoradiographic method”

Radioactjvity ‘
measured

by scanner /
and in blood

Uptake in brain

Total input to brain

Time




UNIVERSITY OF COPENHAGEN

The autoradiographic method
- the Sokoloff equation

[C]Deoxyelucose-phosphate formed
between Time, 0 to T

4 ™ | subtracted by small
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FDG uptake determined from compartment modeling
(K, *-k;*) - "the dynamic method”
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Lumped Constant - LC

LC = Net Clearance of FDG / Net Clearance of Glucose

Kk,

LC = K _ ko +k; K. = net clearance (mL/g/min)
K. Kk
k, +k,

Hexokinase favors glucose over FDG, and transport favors FDG
over glucose

Litterature values for LC for FDG in human brains: 0.65-0.81 Can
change during hypoglycemia

In tumours the LC is highly variable and ["8F]FDG PET may not allow

accurate assessment of glucose utilization
Barrio et al. (2020) JNM :61(6)931-937
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metabolism

J Nucl Med 2002; 43:1157-1166

6 constants. The formula for the LC, defined by Sokoloff et
al., 1s:

2

ANK, Vi
bV K

LC Eq. 1

where A is the ratio of the distribution volume of FDG to
that of glucose, & is the fraction of glucose that continues
down the Embden—-Meyerhof pathway after being phos-
phorylated, K, 1s the Michaelis—=Menten constant for phos-
phorylation of glucose (* indicates FDG), and V. 1s the
maximum velocity for phosphorylation of glucose (* indi-
cates FDG). The LC is used to convert MRgpg to MR, by
dividing MRgpg by the LC. Clearly, the value of the LC is
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cates FDG). The LC is used to convert MRpng to MRy, by
dividing MRy by the LC. Clearly, the value of the LC is
critical in quantitative calculation of regional cerebral glu-
cose metabolic rates when FDG 1s used as the tracer.
Determination of the value of the LC requires either
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Linearization methods are very often used to
calculate MRglc from [18F]FDG PET

1. Based on compartment models with irreversible binding

2. Clearance (the amount of accumulated tracer in relation to the amount of
tracer that has been available in plasma) is measured at equilibrium as
the slope of the plot

5 Multiple-time graphical analysis
= 1 (Gjedde-Patlak plot)
Tissue (PET) \ \

n a =m = & = @ om ’ -k * El ik i

e

nake

orcur
on,

Slope =
net influx constant
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T
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Gjedde-Patlak plot
The solution to a two-tissue compartment model (k,=0) is:
Kl
k,+k,

C, = (ke ™" + 1, )® C,

This was rearranged by Gjedde and Patlak:
t
Cr =VaCo +K,[C, dr
0
Which after dividing by C;is a straight line when t=t*:

jCP dt

ﬁ =Vip +K; 5
o o
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C_Tissue/C_Ref

1 [20.0,1.2973] - 24 [71400, 2 1463]
Patlak plot . .
22413
t
C,d :
J- P T 1.8477 |
C :
Ty 4K L
ND 1 o
C C 1.4541 |
P P
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From the fitted line we therefore have:
e The metabolic rate  _ &% s the slope

k, +k,
e The distribution volumeV,, = Kk, >
(k, +k,)

is the intercept
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Graphical Linearization A
(Gjedde-Patlak Plot) ¢ Rolanc Rogon .
10 /
K; varies with segment Eg _,/ _,-f"‘
used for determining the e ::.;/
slope f,..u"""'w
B Why? nﬂ 100 m 300
[['cp'mdtrcrm]
B. (min)
0.08
o .‘\\\Q———O ﬂ £
T 0.04 4
k,* > zero *%::: ThN~—— :gg
= tracer escapes from Tl T T~ |
the brain, not true =y g F § ¢ 0
irreversible binding =8 3 B3
(min)

FIGURE 5. “Patlak plots” of data obtained during scanr
from O to 120 min following a pulse of ['®F]FDG for the wt
brain, one gray matter structure and one white structure i
representative subject. (A) The graph shows five 20-min disci
linear segments for each of the three ROIls. Each segment
fitted to four consecutive points, starting and ending, resg
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[18F]FDG PET
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Q1: What is the difference between the liver curve on the left
and the tumor curves on the right? What is the physiological
difference?

Q2: Is FDG a reversible or irreversible tracer?
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FDG PET

BS:13 mM

Max: 2.6 5L

What is the difference between the upper scan and the lower
scan that was repeated a few days later?

BS:7.6 mM

Max: 3.7 SV
Diameker: 22.9 mm
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Blood glucose level

« High blood glucose levels (fasting? Diabetes?)
interfere with FDG uptake

« When serum glucose > 8mM
« SUV in tumor drops from 5.1 to 2.8, p<0.02
« SUV in skeletal muscles increase

« K, can decrease 25% with higher serum glucose

« Infusing insulin increase the translocation of GLUT 4
shunting FDG to organs with a high density of
receptors (skeletal and cardiac muscles)

« Metformin strongly increase the SUV of the small and
large intestines
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Glucose transporters

Glucose is hydrophilic and need a

GLUT1

transporter

* Blood
» Blood-Brain Barrier

€ §
* Heart (lesser extent) ﬁ

* Insulin-Independent

Sodium-Dependent Glucose Transporters

* Enterocytes of Intestinal \ + Insulin-Independent
SG LTl Epithelium (Luminal side) : * ATP- and Na-dependent
+ Glucose Absorption
» Proximal tubule of nephron * Insulry{ndependient
SGLT2 (Kidney) + ATP- and Na-dependent
+ Glucose Retention

su

GLUT2

» Liver
* Pancreas
» Small Intestine

o &

* Insulin-Independent
» High K,
* Low Affinity

GLUT3

» Brain
* Neurons
+ Sperm

* Insulin-Independent
* Low K,
» High Affinity

GLUT4

» Skeletal Muscle
+ Adipose Tissue
* Heart

* Insulin-Dependent***
* Moderate K
* Moderate Affinity

e

GLUTS

+ Enterocyte of Intestinal
Epithelium (Luminal Side)

"
/ -

* Insulin-Independent

- Fructose Transporté.

Youtube: Glucose Transporters (GLUTs and SGLTs) - Biochemistry Lesson

[18F]FDG is not a good

bstrate for SGLT

Insulin level
should be low to
avoid GLUT4 that
transport FDG into
the muscles

-> fasting!
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Tissue activity curves

A [*F]FDG PLASMA [*F]FDG TISSUE
: g -
E E 3 .
g .| Fasting
0 - 40 80 120
Time (min)
B
= 0.12
= —— 6 o —— 6 .
g " —~n g ~—- | Insulin
E o noE . : .
g o - F — | stimulation
0.04 ——#]l —a—1l
| 0 - v
o 40 B0 120
Time (min) Time (min)
X

Individual [18F]FDG plasma and tissue time-activity (normalized to cdose) curves in basal state (A, subjects

1-5) and during insulin stimulation (B, subjects 6—11).
Bertoldo et al. 2001 Am J Physiol Endocrinol Metab 281: E524-36

What happens during insulin stimulation?
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How to avoid arterial cannulation for rCMgic
measurements

Scan procedure

———c-- - . .« = . « =« = Arterial samples
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How to avoid arterial cannulation for rCMgic
measurements

A.C. Henriksen, M.N. Lonsdale, D. Fugle et al. Neurolmage 253 (2022) 119079
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Fig. 1. Plot of the fitted arterial (AIF, red hollow circles) and image derived (IDIF, filled triangles) inputfunction. Top right the first 3 min. Note the earlier and
narrower IDIF peak.
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Scanners with build-in Gjedde-Patlak plot
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Methods to avoid the arterial cannulation

ﬁ Time

Figure 2: Example of a dynamic whole-body (D-WB) PET acquisition protocol including an initial 8-minute dynamic
scan over the chest region, followed by a D-WB scan with multiple continuous bed motion passes
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TBR(MR;c)

How to avoid arterial cannulation for rCMgic

measurements
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Whole-Body [18F]FDG Patlak Imaging Using

63 {2+ N o K 0 X
- J [ - [ - (= - .
0003 ' 'J Q ; Q ’ i ’ i
L A A \
I 0.002 1 Yy . . 1 \
K ] ] ] '] | | ]
i
Image-based Image-based Direct ET Direct ET Direct console Direct console Direct console
Console |DIF ET IDIF IDIF 30-60 min PIF 30-60 min PIF 30-60 min PIF 5565 min PIF 55-65 min
30-60 min 30-60 min MRDAS MRDES MRDAS MRDAS MRD322
MRDAS MRDAS

FIGURE 1. Example coronal parametric K; images of 65-y-old man with non—-small cell lung cancer.
Images were obtained with different approaches using IDIF or scaled PIF at different intervals after

injection.

J Nucl Med 2024; 65:1652-1657
DOl: 10.2967/jnumed.124 267784
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