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Foreword 

This text forms the basis for a three day seminar course on PET - pharmacokinetics. The 
course has grown from an original idea of W. Müller-Schauenburg to compose an 
interactive introduction to the concepts and models used for PET data analysis. Through 
contributions from: Paul Scherrer Institute, Switzerland, MHH Hannover, Copenhagen 
University Hospital, University Medical Centre Groningen, A. Lammertsma AZVU PET 
Centre, J. van den Hoff PET Center Rossendorf, R. Koeppe, University of Michigan 
Medical School, R. Blasberg Memorial Sloan Kettering Cancer Centre, Richard Carson 
NIH and Bob Innis NIMH, this manual has developed into an accompanying text which 
aims to serve as an introduction to the field, in the areas of cerebral blood flow, glucose 
metabolism measurement and neuroreceptor kinetic quantification. The current revision 
brings the text up to date and, it is hoped provides a text, which can be read equally well 
before or after the course. 

The main aim of the PET Pharmacokinetic Course is to explain pharmacokinetics in the 
context of PET measurements. Pharmacokinetics can in general, be defined as the 
quantification of the time course of a drug and its metabolites in the body and the 
development of appropriate models to describe the observations [Rowland, M., T. N. Tozer 
(1989). Clinical Pharmcokinetics. Pennsylvania, Lea and Febiger.] Taking the brain as a 
model, various examples of quantifying the time course of radiolabelled substances e. g. 
water or glucose, with the PET camera are developed. Three measurement fields are 
addressed: regional cerebral blood flow, glucose utilisation and neuroreceptor binding. For 
each topic, theoretical models for analysing the PET signal obtained will be explained. The 
mathematical techniques and pharmacological concepts required are introduced separately.  

During the course, the basics for understanding pharmacokinetic modelling are outlined 
within the first day. As the course evolves, the model configurations become increasingly 
complex. The various computer exercises, designed to complement the theoretical parts, 
and encourage the interaction between participants and tutors, together with the computer 
simulations shown in some talks are expected to help merge theory with practice. The 
participants are invited to ask questions and make comments as much as possible. 
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Overview 

The Introduction starts with some very basic remarks concerning PET compartment 
analysis. 

In the section Mathematical Basis of Modelling, exponential functions are shown to be 
inherent to the solution of the differential equations, which describe biological signal 
change in PET. Convolution plays a role when the tracer is administered over an extended 
time and the measured uptake is considered as a sum of time shifted exponential functions.  
Parameter estimation methods that are used for curve fitting procedures are also 
introduced. 

Basic Pharmacokinetic Concepts are explained in the next chapter in order to introduce 
important pharmacokinetic quantities, their relationships, units and special role in model 
set-ups for analysing PET data. The idea of simplifying complex biochemical phenomena 
in tissue using compartments is illustrated by the Renkin Crone model for quantifying 
perfusion in brain. 

Cerebral blood flow - one tissue compartment model describes the Kety-Schmidt 
model, a single-tissue-compartment model, as a standard method for analysing regional 
cerebral blood flow based on the Fick-principle. Partition coefficient, already mentioned 
within Basic Pharmacokinetic Concepts is revisited and explained in relation to the 
measurement of perfusion. Practical aspects of data measurement tracer showing fast 
kinetics, such as decay, delay and dispersion are also addressed.  

Energy metabolism (FDG) - two tissue-compartment model. Using the example of 
FDG to measure regional glucose usage, the two tissue-compartment model is introduced. 
Compartments for free and bound FDG are illustrated. These can more generally be used 
to represent free and bound ligand for a number of other PET-tracers. Simplification 
methods are also addressed. 

Linearisations introduces model adaptations to simplify data analysis and computation. In 
contrast to the non-linear parameter estimation procedures discussed in section 2.4, the 
desired parameter is deduced using the general linear model. For different models, methods 
exist which differ in their assumptions and realisation. The Logan plot, van den Hoff 
linearisation and Gjedde Patlak analysis are explained.  

The chapter on in-vivo and in-vitro methods is intended to help understanding of in-vivo 
PET kinetics from the point of view of in-vitro experiments, which may be more familiar 
to some. This chapter introduces a closed two-compartment model and uses it to explain 
the in-vitro model. This model is then used as a foundation to discuss the in-vivo binding 
processes seen in PET. The concepts of (Bmax), binding potential, and dissociation constant 
(Kd) are introduced. 

The chapter Receptor kinetics - modelling and practical applications introduces the full 
pharmacokinetic model used for in-vivo ligand binding studies in PET. A step by step 
protocol for setting up a receptor density investigation is given, together with hints and 
practical information for analysing receptor data and performing PET scans in general. 

The chapter Steady State Analysis discusses the influence of competitive binding on the 
expected tracer signal. It also describes experimentation in the presence of varying 
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amounts of unlabelled ligand as a means to determining Bmax and Kd separately. The 
optimum model configuration is adapted to take the equilibration time and the particular 
radiotracer under investigation. Advantages and disadvantages when simplifying 
mathematical models in order to estimate the parameter of interest are illustrated. 

Equilibrium measurements describe the bolus and infusion technique to achieve 
equilibrium conditions in-vivo. This method is a sensitive technique, which allows changes 
in occupancy during the measurement to be detected. This allows measurements of 
changes that occur over short time intervals e.g. because of a pharmacological challenge, to 
be measured. Issues surrounding the achievement of equilibrium and possible 
misinterpretation if this is not properly established are discussed. 

Receptor kinetics - simplifications and limitations explains in detail the application of 
the concept of volume of distribution to simplify interpretation of the PET signal. 
Limitations of modelling with reversible and irreversible ligands are also discussed. 

Data driven methods are explained and derived in terms of general compartment systems, 
which use either plasma or a reference tissue input. These methods characterise the 
system's impulse response function and do not require the a-priori selection of a particular 
model. The three methods are: Graphical analysis (Patlak and Logan), Spectral analysis 
and Basis pursuit. 
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Nomenclature and units 

Nomenclature and units in the literature on PET have not been standardised. Efforts were 
made during the European Union task group meeting on modelling to decide on common 
terms, however the adoption of this recommendation is slow. There is no extra 
standardisation for medical measurement units defined by the Systeme International 
d'unites (ISO 31 TC 12). In this text, we have used the S.I. system as far as possible, 
however to achieve correspondence with the literature compromises have been made. 
Exceptions to the SI system are: the use of min (1 min = 60 s) and min-1 instead of s and s-1 
(or Hz), and ml (1 ml = 1 cm3) for physiological rate constants. Where possible units in 
this text follow the United States National Institute of Standards and Technology 
recommendations on units and orthography, however the units may also be those most 
commonly found in the literature and have been adopted as shown by the example of 
perfusion: 

F =
Φ
V

 [ml⋅min-1⋅100g-1] 

which would be given the conventional unit min-1. 

For the sake of simplicity, functions of time will not be written using the explicit 
dependence notation at each occurrence e.g. notation cp is used in preference to cp(t) where 
possible. [Goodman A W, Ratti, J S; Finite mathematics with applications; pp 477-488; 
Macmillan ; New York;1979]. 

Noting that the compartment models developed here normally assume that the blood 
concentration time course is measured, models are named using the recommendations of 
the European task group. In this standard, the model is named based on the number of 
compartments in tissue. Using this scheme, the model for regional cerebral blood flow is a 
single tissue-compartment model, that for FDG is a two tissue-compartment model and the 
standard receptor model, when left unsimplified, is a three tissue-compartment model. See 
also the notes on the usage of K1 and kn=2..4 in section 2.6. 

Throughout the course, reference is made to volumes of distribution Vd, Vf etc. As will be 
explained in section 3.4, these are numerically identical to the alternative "partition 
coefficient". However they represent two different concepts. The partition coefficient is 
conceptually a unitless ratio of concentrations. The concept of volume of distribution is a 
unitless ratio of relative volumes. At the appropriate point in the text it will be easier to 
employ one or other of these (numerically identical) variables to explain a given 
phenomenon, therefore both have been retained. 
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Table 1. Abbreviations 

Symbol Quantity Units 

λ Radioactive decay const. min-1 

Φ Physical flow ml⋅min-1 

ρ Apparent partition coefficient unitless 

τd Dispersion constant min 

Bmax Available receptor site concentration mol⋅l-1 

BPF, BPP, 
or BPND, 

Binding potential  Unitless or 
ml.cm-3 

ca Radioactivity concentration in arterial 
blood (or molecular conc.) 

Bq⋅ml-1 (mol⋅l-1) 

cb Bound radioactivity concentration in 
tissue (or molecular conc.)   

Bq⋅ml-1 (mol⋅l-1) 

cf Free radioactivity in tissue 
concentration (or molecular conc.) 

Bq⋅ml-1 or 
(mol⋅l-1) 

cp Tracer plasma radioactivity 
concentration (or molecular conc.) 

Bq⋅ml-1 (mol⋅l-1) 

cp
glu Concentration of glucose in plasma (mol⋅l-1) 

ct Radioactivity concentration in tissue - 
the PET tomographic measurement (or 
the molecular conc.) 

Bq⋅ml-1 (mol⋅l-1) 

ct
L Concentration of ligand or substance 

"L", in tissue. 
 

cw Radioactivity concentration in whole 
blood (or molecular conc.) 

Bq⋅ml-1 (mol⋅l-1) 

cr Radioactivity concentration in a 
reference tissue. 

Bq⋅ml-1 (mol⋅l-1) 

E Extraction fraction unitless 
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F Perfusion ml⋅min-1⋅100ml-1 
or min-1 

fP free fraction of ligand in plasma unitless 

fND free fraction of ligand in tissue unitless 

K1 Rate constant from blood to tissue 
(calibration constant) 

min-1 or 
ml⋅g-1⋅min-1 

Kd Equilibrium dissociation constant mol⋅l-1 

Kd
L Equilibrium dissociation constant of 

ligand or substance "L" 
mol⋅l-1 

Ki Influx rate constant for an irreversible 
model 

min-1 

knn∈2,3,… Rate constant "n" min-1 

koff Dissociation rate constant min-1 

kon Bimolecular association rate constant min-1⋅mol-1⋅l 

N Number of molecules unitless 

oL Occupancy of receptor sites by ligand 
'L'. 

unitless 

P Permeability cm⋅min-1 

Q Mass of substance g 

S Capillary surface area cm2⋅g-1 

SA Specific activity TBq⋅mmol-1 

T Characteristic time min 

t1/2 Half-life min 

t Time min 
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Vd General volume of distribution 
(Identical to tissue/blood partition 
coefficient) 

ml.cm-3 

Vi 

i∈f,ns,nd,s 

Distribution volume of a particular 
compartment, e.g.  f=free, ns=non-
specifically bound, nd=non-
displaceable, s=specific. 

ml.cm-3 

Vb Intra-vesical blood volume in Vd 
(proportion of tissue volume occupied 
by intravascular blood) 

unitless 
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1. Introduction 

K.L. Leenders, University Medical Centre Groningen 

1.1 PET data and models 

The starting point for analysing data is not the model but the measured data. This is in 
general, the tissue activity time course, measured by the PET camera and the blood data 
(whole blood or plasma) calculated from blood samples drawn during the PET scan see 
Fig. 1-1. 
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Figure 1-1. Plot of the plasma concentration time course 'x' and the time course in a small 
frontal region of interest measured by PET 'o' after injection of 200 MBq of FDG into a 

healthy human subject. 

This, and the knowledge of the biochemical and physiological behaviour of the applied 
radiotracer in brain tissue, is the basis for developing a mathematical model in order to 
describe the observed data. It is common use in the field of pharmacokinetics to define 
physiologically separate pools of tracer substance whether in space or time as 
“compartments”. Fig. 1-2. 
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BBB

K1

k2

Ca Ct

 

Figure 1-2. A general compartment model where ca defines the concentration of 
substance in arterial blood, K1 the rate of change of substance over the blood brain 

barrier BBB to the tissue-compartment defined by ct, the concentration of substance in 
tissue. k2 is the efflux rate from tissue back into blood. 

In Fig 1-2, the tissue concentration is affected by a rate of movement of substance from 
blood into tissue and by a rate of loss of substance from the tissue. Changes in the tracer 
tissue concentration ct can be described in terms of the tracer blood concentration ca and 
the two unidirectional rate constants K1 and k2. By expressing the values of these 
parameters mathematically, the values of these parameters can be computed form the 
measured data. 

For a very good introduction to the basic principles of tracer methods, please also read 
"Tracer Kinetic Methods in Medical Physiology" (Lassen, N. A. and Perl, W.; 1979;). 

1.2 General assumptions of the PET tracer method 

General assumptions of the methods that need only be true during the experiment. 

1.3 Tracer assumption 

This assumption states that the physiological processes and molecular interactions are not 
influenced by the PET measurement. In the large majority of PET studies (but not all), this 
assumption is easily met. For example, consider the injection of 400 MBq of a tracer with a 
(rather low) specific activity of 4 TBq⋅mmol-1. This is equivalent to the injection of only 
0.1 μmol of tracer. Note that some models, in particular some of the receptor models, this 
assumption may be violated 

1.4 Constant state (Steady state) assumption. 

This assumption states that the physiological processes and molecular interactions are in a 
constant state during the PET measurement. This is an extension of the previous 
assumption that dealt with the influence of the PET measurement on the system. Thus, 
during a perfusion measurement the perfusion should be constant and during a metabolism 
scan the metabolism should be constant. The "Steady state" here does not refer to the tracer 
itself. 
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1.5 Instantaneous mixing assumption. 

The models presented during this course are based on distinct compartments (see chapter 
2). This assumption states that the concentration in these compartments is homogeneous. 
This is an essential assumption for the use of compartment model as used during this 
course. Alternative, distributed models, can be developed, but these will not be discussed 
here. 

 

1.6 References 

 

Lassen, N. A. and Perl, W.; Tracer kinetic methods in medical physiology; 1979; Raven; 
New York;  
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2. Mathematical basis of modelling 

R.P. Maguire, GNIP Project, Groningen, The Netherlands. 
W. Müller-Schauenburg, University of Tübingen, Germany. 

2.1 Introduction - compartments and mathematics 

In this short course, there will be a focus on pharmacokinetic modelling of PET data, 
obtained after the injection of a radiolabelled tracer into the blood stream. After the tracer 
has been introduced, both the blood concentration and perhaps more importantly, the tissue 
tracer concentration are measured over time. From physical and physiological 
considerations, it is expected that transport and binding rates of the tracer will be 
determined by local concentration differences. For many processes the rate of 
accumulation or washout of a substance or its tracer analogue will be linearly related to the 
concentration difference across a boundary - which can be physical (a membrane) - or 
notionally between e.g. bound and unbound receptor. These boundaries partition the 
measured tracer activity concentration in tissue into a number of distinct compartments, 
which are the basis of the mathematical models that will be developed here. In figure 2-1 a 
example of a single compartment is illustrated.  

 

Figure 2-1 Diagram of a compartment model. The concentration in the central 
compartment ct receives input from the compartment ca at a rate determined by K1. k2, on 
the other hand, is the rate of loss of concentration from the compartment. The downward 
arrow associated with k2 signifies that the return is to the venous compartment, and thus 

k2 makes no contribution to ca. 

Equation (2.1) describes the rate of change of the concentration in the compartment, due to 
gains from an input concentration rate that is known (K1ca) and losses driven by the 
concentration in the compartment itself (k2ct). 

 ta
t ckcK

dt
dc

21 −=  (2.1)   

Differential equation (2.1) describes the dependence of the change of concentration in one 
compartment on the concentration of another compartment. This equation has been derived 
from considerations of conservation of mass which, by assuming a particular dilution 
volume, lead to equations in concentrations. By knowing, or hypothesising, a given 
configuration of compartments a set of differential equations to describe the exchange 
processes between them can easily be derived. Since PET data consists of local 
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measurements of the radioactivity time course of a tracer in tissue (rather than the rate of 
change), it is necessary to solve these equations, before a direct comparison can be made. 
This is not a trivial problem and this chapter describes in detail two elements of the 
required solution: the function ekt and convolution. 

2.2 The function f(t)=et ("e function or exponential") 

In mathematics the function f(t)=et has a very important property, namely: 

 
t

t

e
dt
de

=
  (2.2)  

from this we can also derive the following 

 kt
kt

ke
dt

de −
−

−=   (2.3)  

This equation states that the differential of the exponential function is the exponential 
function. So the rate of change of this function in time is equal to the value of the function 
at any time. Consider equation (2.1) again. In this equation, the differential of 
concentration appears on one side of the equation and the concentration itself on the other 
side, in an analogous way to the differential of the function and the function itself in 
equation (2.2). Since the property expressed in equation (2.2) is unique to this function, it 
plays a very important role in solving the differential equations that arise in compartmental 
modelling. It is not the aim of this course to dwell on techniques for solving differential 
equations, so at the outset we state the solution to equation (2.1): 

 a
tk

t ceKc ⊗= − 2
1  (2.4)  

Using (2.3) we can verify that ct=K1e-kt is a solution of (2.1) with a sharp input (an impulse, 
generating a start value K1 at t=0) with no further input (i.e. ca=0 at times greater than t=0). 
This solution of (2.1) is called "impulse response function" (IRF). 

The rest of this chapter will concentrate on explaining this type of equation, the function 
e-kt, the meaning of the convolution operator " ⊗ ", and their physical interpretation. For a 
more rigorous explanation, the reader might consult a textbook on linear differential 
equations e.g. (Bittinger 1981). 

2.2.1 Constant fraction - Radioactive decay 
All of the examples of PET measurement (activity time courses etc.) in the later chapters of 
this manual will have been corrected for the radioactive decay of the PET tracer. This 
means that the time activity curves which will be shown are directly proportional to the 
tracer's physical concentration at all times, rather than to the tracer's observed radioactivity 
concentration. In this subsection, radioactive decay will nevertheless be considered since it 
provides a simple and interesting illustration of the function e-kt. 
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Consider a space, filled with the radioactive gas [C-11]CO2. For each molecule there is a 
constant probability P that it will decay, emitting a detectable particle, in a given time 
period Δt. The number of radioactive molecules left in the container as time progresses is 
shown schematically in figure 2-2 .  

 

Figure 2-2 Schematic representation of radioactive decay.  On the left hand side of the 
diagram, the number of radioactively labelled molecules in a compartment is shown, 
darker indicates higher concentration. On the right hand side, the actual number of 

molecules left, at each time point, has been plotted.  

Since the probability of a radiolabelled molecule decaying is constant in a fixed time 
interval, the number of molecules which decay in a given time interval depends on the 
number of molecules that are present (that are left). The number of radioactive molecules 
is decreasing continuously and so will the rate of change. However, from the constant 
probability of decay, it can also be deduced, that a constant fraction of the radioactive 
molecules left will decay at any instant. This can be rewritten in equation form: 

 
kN

dt
dN

−=
 (2.5)  

Where N is the number of molecules (a pure number) and k (units:min-1; decay constant; 
the logarithmic decrement) is the fraction which are lost per time interval, at any instant. 
Using the properties of equation (2.2) this equation can be solved: 

 ktNtN −= e)( 0  (2.6) 

Where N0 is the initial number of radioactive molecules and N(t) is the number of 
molecules at any time t (units: min).  
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2.2.2 Compartmental representation and properties of the function e-kt 
Although no molecules physically leave the container, there is a loss of radioactive 
molecules. Conceptually a 'system' with this behaviour can be represented using a 
compartment diagram such as that in figure 2-3  

 

Figure  2-3 Compartment diagram representation of radioactive decay  

The rate constant (k) determines the shape of the 'exponential curve', the graph of the 
function in time. Increasing k will cause a faster decay, and decreasing it will have the 
opposite effect. In this sense, it describes part of the characteristics of a compartmental 
system. The rate constant k can also be expressed in different units. Firstly, if k is inverted, 
then a new variable with the units of time can be found: 

 k
T 1

=
 (2.7) 

This variable T ("characteristic time", units: min) also characterises (numerically speaking: 
parameterises) the function e-kt. If T is larger (longer), then the curve will decay more 
slowly. If T is smaller (shorter) then decay is faster. Considering equation (2.6) again, it 
can be seen that at time t=T, then: 

 37.011

0

≈== −

e
e

N
N   (2.8)  

So in time T, 37 % of the initial molecules are left, thus 63% have decayed. The fraction of 
molecules which have decayed at successive multiples of this characteristic time T are; T 
(63%), 2T (86%), 3T (95%), 4T (98%), 5T (99%)…7T (99.91%), illustrating the 
asymptotic behaviour of the e-kt function. 

Another expression of the rate k is the half-life t1/2 (min.). It is calculated by considering 
the time at which exactly half of the radioactive molecules have decayed, and can be 
calculated thus: 

 2/15.0 kte−=  (2.9) 

 2/12 kte=   (2.10)   
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 kk
t 693.0)2ln(

2/1 ==
 (2.11)  

The reader may find it useful, as an exercise, to set N(t)/N0 to 0.5, and t=t1/2 in equation 
(2.6) to verify this result. As with the characteristic time T, a series of successive fractions 
can be calculated for t1/2; calculated from (1/2)n, where n is the multiple of t1/2. 

Using equation (2.5) it can also be seen that the tangent to the graph of e-kt, at t=0, has a 
gradient of (-kN0), and will intercept the t axis at time 1/k i.e. T (the "y-axis" intercept is 
N0). 

2.3 Convolution 

As shown above, the function e-kt can be used to characterise the time course of 
radioactivity, or indeed of concentration, in compartments under specific circumstances. 
An assumption in the discussion above has been that the compartment has an initial 
radioactivity, or an initial concentration, and that there is no further input during the time 
under study. In PET-pharmacokinetics, this is rarely the case. In general, the aim is to 
derive compartment time courses, based on an input concentration that is known, but varies 
in time. The input concentration to the tissue-compartments is generally the blood supply 
and in order to calculate the time course in these compartments it is necessary to combine 
the e-kt function with the convolution. 

2.3.1 Linearity - system input and output 
Consider the system in Figure 2-3 . It has been stated that it will always decay with a shape 
of function characterised by e-kt, and that the time activity course will be proportional to 
the number of radioactive molecules at the start. This is true, so long that the molecules are 
delivered into the system instantaneously (as an impulse) and is illustrated in Figure 2-4.  
using three different starting numbers of radioactive molecules, and a half-life of 21 min. 
From the graph, it is possible to confirm that the proportions of 1:0.5:0.1 are maintained at 
every time point in the curves. (Note that these curves are idealised, radioactive decay is a 
stochastic (probabilistic) process. With as few as even 10000 molecules, and the given 
time resolution, the curves would be associated with a lot of statistical fluctuation.) 



10 PET Pharmacokinetic Course 2007 

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

 

Figure 2-4. Graphs of the decay of 10000, 5000, and 1000 molecules, according to 
equation (2.6). 

2.4 Delta function - unit impulse 

The discussion here has considered the "system response" (model) as the number of 
molecules left in the system as a function of time. The system response to an ideal 
instantaneous delivery of molecules at t=0 characterises the system in some way. One step 
farther in mathematical abstraction is to idealise the start function (delivery of molecules) 
as an infinitesimally short impulse.  The mathematical function that expresses the ideal is 
the Dirac delta δ(t) function, which is an infinitely short pulse with an integral of 1 unit at 
time t=0 - the perfect unit impulse. The output of the system for a δ(t) input is equal to the 
system response, also called the convolution kernel. The system response to a delta input 
(unit impulse) characterises the system in a standardised way. Note, in employing this 
concept, the concept of discrete molecules is ignored and the system is described by a 
smooth continuous function. 

2.5 Linearity and shifting in time 

Now consider entering three amounts of molecules into the system at slightly different 
times, say at 10000 at 1 min., 5000 at 5 min. and 1000 at 13 min, then the responses can be 
summed in a linear way to arrive at the overall expected response, as shown in Figure 2-5 .  



 Mathematical basis of modelling 11 

 

0 20 40 60 80 100
0

5000

10000

15000

Total response 

10000 input 

5000 input
1000 input

 

Figure 2-5 The effect of injecting three boli at 1, 5 and 13 min. The total response can be 
calculated by summing the response from the separate time shifted responses. 

This simple linear addition of the separate responses is the key to understanding the 
convolution principle. By considering the input to a compartment as a series of separate 
impulses, which can be summed (superposed) to form a continuous response, the 
convolution can be broken down into its constituent components. 

2.5.1 Convolution as a sum of system responses. 
By knowing the response of the system to a unit impulse, it follows from the principle of 
linearity that the response to a bolus input of arbitrary magnitude can be estimated. By 
knowing the response of the system to a unit impulse, it is then possible to calculate the 
system response to an impulse of any magnitude. The unit impulse response is a basic 
description of the systems dynamic (kinetic) behaviour. Calculating the systems response 
to any input (not only a bolus) can be achieved by convolving the response to a unit 
impulse (convolution kernel) with the input (arbitrary input function.). By dividing an 
arbitrary input into a series of unit impulses of varying magnitude, shifted in time, and 
superposing the system responses, the total system response - output - can be calculated. 

2.6 Bolus injection and constant infusion 

Using the tools of the unit response function and the convolution, the special conditions of 
bolus injection and constant infusion can be examined. A bolus injection, if it is delivered 
instantaneously, is equivalent to the conditions of the unit impulse that have previously 
been discussed. Therefore, the observed behaviour of the system (the response) is the unit 
impulse response, scaled to the input magnitude. Knowing the input magnitude, the unit 
impulse can be determined by division. (Note that the units will depend on the 
measurement e.g. mol, mol⋅l-1, Bq⋅ml-1). An example of an arbitrary compartmental system 
response is given in figure 2-6 , using the injection of a known amount (25 mg) of 
substance into an arm vein, and subsequent measurement of the substance concentration in 
blood. 
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It should again be stressed that in this experiment, and in the rest of this text, the data have 
been corrected for radioactive decay. The loss of substance concentration from plasma in 
this case is due to physiological clearance from plasma. 
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Figure  2-6 The measured concentration of a substance in plasma after injection of 25 mg 
(solid line). The concentration is measured in mg⋅l-1. The inferred unit impulse response is 

also given (dot-dash line). 

From this data the response to a unit input can be estimated by division by 25 mg and is 
shown as a dotted line in figure 2-6 . Using this impulse response - the measured 
concentration time course after bolus injection - the response to an arbitrary input can be 
estimated graphically. Note the impulse response function here is the expected 
concentration time course in plasma for a given injected mass of substance. This implies 
that the impulse response function has units (l-1). In PET the input is normally the 
measured activity concentration in blood and the response is the activity concentration time 
course in tissue (as measured using the PET camera). Although the input and response 
have the same units, the literature often attributes units of (ml blood/mg tissue/ min) to the 
constant K1, which is capitalised to denote a change in measurement variable hidden in the 
response function. It could be argued that K1 should be considered as part of the input (a 
scaling factor), rather than a rate constant of the model. Although K1 will be used as a 
parameter of the models in this test, the reader may wish to consider conceptually K1 as 
scaling the "input". Since K1 has a linear relationship with the output, it can be considered 
mathematically as either part of the input or part of the system response (model). In the 
convolution, equation K1 can be associated with either input or the system response 
(model). 

Consider calculating the response to a constant infusion of the same substance used above 
(say 5 mg⋅min-1). Arbitrarily each 5 min section of infusion could be thought of as a single 
bolus, given around the midpoint of that section, and containing the same amount of 
substance as would be delivered in the 5 min, i.e. 25 mg. Next, the response to each of 
those input impulses could be calculated by multiplying the unit response by 25, yielding 
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the curve in figure 2-6 . The individual responses are then positioned (shifted) at the 
appropriate position on the time axis. Finally, these are summed to yield an approximation 
to the response. 

The result of these operations is given graphically in Figures 2-7 and 2-8 . The first figure 
shows the infusion and its approximation, and the second figure, the individual system 
responses to the separate boli, and the sum total. Note how the system response to the 
infusion reaches a saturation plateau at later time points. The time taken to reach this 
plateau, the initial gradient of the plasma concentration and the plateau are determined by 
the input and unit impulse response. 
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Figure 2-7 A constant infusion (solid line) considered as a series of boli (points), each 
equivalent to 5 min. of the infusion. 
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Figure  2-8 Response to each of the boli (dashed lines) in the previous figure, and the total 
response (solid line). 

Referring back to the single compartment model in equation (2.4) , the convolution of the 
system unit impulse response (e-k2t) and the input function ca, (i.e. the process of shifting 
and adding of bolus responses which has been shown above) yields the expected tissue 
activity concentration ct, which is equivalent to the integral: 

 ∫ −−=
t

a
tk

t dceKtc
0

)(
1 )()( 2 τττ   (2.12)  
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Where t is the time for which the convolution is required. It is interesting to see that in this 
notation, the system impulse response is mirrored in time since the term '-τ' appears. 
Careful thought can confirm that this is indeed reasonable, since 'older' contributions have 
already decayed, in a manner governed by e-k2t. Note, as has been mentioned before, the 
output for a delta function input is identical to the 'system response': 

 ∫ −−− =
t

tktk dee
0

)( )(22 ττδτ   (2.13)  

 

2.7 Parameter estimation (curve fitting) 

2.7.1 Explaining data using models 
 
The pharmacokinetic models developed in this course are used to interpret PET 
measurements. They are necessarily much simpler than complete physiological models, 
because they are adapted to the spatial and temporal resolution of the PET instrument. 
Indeed, the appropriateness of the model can be determined from the measured data 
(Landaw & DiStefano III 1984) (see comments on the application of F-test in chapter 7.7). 
The variables (parameters) in the mathematical descriptions of the models are typically rate 
constants (the constants vary between regions and subject, but are fixed for one 
homogeneous region during the measurement), distribution volumes and other 
physiological measurement quantities. Using the measured input signal - the blood activity 
time course - the mathematical model can be used to calculate the expected 
tomographically measured tissue time activity course for a chosen set of model variables. 
This can then be compared with the measured data. The aim of parameter estimation 
(fitting) is to find estimates variables which best explain the measured data. 

2.7.2 Linear and non-linear regression 
 
If a mathematical model is linear, that is, if there is direct proportionality between the 
model variables and the predicted response, then an optimal set of estimates can be 
computed directly in one iteration using linear regression. However pharmacokinetic 
models are typically non-linear - sums of a number of exponential functions, where each 
decay constant in the equation represents a compartment.  

Whether using non-linear or linear estimation, the optimum estimate of the model variables 
for a given data set is determined by minimising the sum of the squared differences 
between the model prediction and the measured data. This can be shown rigorously (Beck 
& Arnold 1977) to be a reasonable definition in terms of a maximum likelihood estimation. 
If the expected variance for each of the data points is known, then the normalised statistic 
χ2, which is the variance weighted sum of squares, can be minimised. χ2 values give a 
direct indication of the level of confidence with which we can trust the estimated values. 
The χ2, sum of squared difference or other functions, used to determine goodness of fit are 
termed cost functions. Generally, algorithms for solving the least squares problem start 
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with a best guess of the solution and by determining the change in the cost function for a 
given change in the model variables a new best estimate is determined. This procedure 
continues iteratively until no further improvement can be made. 

Even for non-linear equations it may be possible to transform the data such that there is a 
linear relationship between the dependent and independent variables allowing linear 
regression to be used (Blomquist 1990;Patlak et al. 1983). In that case, a solution can be 
computed in one iteration. Further examples of these linearisations will be given in chapter 
6.  

2.7.3 Non-linear search algorithm 
 
There are two main methods to determine the modification to the parameters at each 
iteration in a non-linear fit. Firstly, the method of steepest descent, in which an increment 
is added to the variables depending on the local gradient of the cost function with respect 
to each of the variables independently. Secondly, Taylor series methods which model the 
local variation of the cost function as a linear function and solve for a local solution using 
linear regression. The latter of these two methods is also called Gauss-Newton 
minimisation. Although there are a number of other algorithms available e.g. Simplex 
algorithm (James & Roos 1976) and others (Nelder & Mead 1965;Ralston & Jennrich, I 
1978), for many applications the Marquardt-Levenberg algorithm (Levenberg 
1944;Marquardt 1963), which represents a compromise between steepest descent and 
Taylor-Series methods has been shown to perform well. 

2.7.4 Local minima 
 
In contrast to linear fitting, no non-linear algorithm is guaranteed to reach the optimal 
solution. Algorithms may find a local solution to the least squares problem. An example is 
the case where the current estimation predicts a solution that is lower than the data in the 
early part of the curve and greater for later points. If in this case small positive and 
negative variations in the parameters cause the curve to shift up or down, the sum of 
squares cost function will increase for both these changes. This gives the appearance that 
the solution between these two yields a minimum sum of squares. A better solution is 
possible, where the data points are randomly scattered about the model curve, however the 
search algorithm may be satisfied with the local solution. 

2.7.5 Accuracy of the solution 
 
The final values calculated are estimates of the values of the variables in the underlying 
system at the time of measurement. If the measurement data is not associated with any 
measurement error, it should be possible to determine the parameters of the underlying 
system exactly, except in very specific circumstances. If there is noise in the system, that 
is, if the measurement data are associated with some measurement uncertainty then there 
will be inaccuracy in the estimates. If two parameters are highly correlated - small changes 
in the parameters cause similar changes in the predicted response - then as the 
measurement error increases the precision with which either of the two parameters can be 
determined by non-linear parameter estimation techniques will diminish very rapidly. 
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Measurement strategy, patient movement, instrument dead time, measurement background 
and pharmacological effects will all affect the blood and tissue data and hence the 
outcome. It is important to remain critical about these and other measurement error sources 
when applying parameter estimation methods. 

2.8 General Linear Model 

2.8.1 Linear equations 
The compartment models that have been introduced in this course yield operational 
equations containing exponential functions. It has been stated that, generally, the number 
of separate exponential functions in the operational equation is equal to the number of 
compartments in the pharmacokinetic model. Consider a simple equation with two 
exponential functions where the decay constants a1 and a2 are known a-priori: 

 )()( 21
21

tata eetc −− += ββ  (2.14) 

The total concentration c(t) is a mixture of the two known exponential functions 
tata ee 21 and −− , with linear coefficients β1+β2. Since the two constants a are fixed for every 

time point a set of equations expressing the relationship between the measured 
concentration at each time point and the two known exponential functions can be written: 
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In this form, the separate measurements of c(t=t1..tn) form a vector. On the right hand side 
of the equation is a matrix, with the two exponential functions in two columns. Each 
column is a basis function and the two basis functions add together in a linear way, with 
the scaling coefficients β, to make the total function that is equal to c(t). Considering each 
element of the vector on the left hand side and the corresponding rows of the matrix 
individually, along with the coefficients, it should be possible to see that the matrix 
expresses a set of equations, analogous to equation (2.14), in each of the t=t1..tn. The 
matrix vector representation above can be written using vector and matrix variables: 

 βXc =   (2.15) 

Where the bold type indicates a matrix or vector. This equation expresses the general 
linear model (GLM). 

Although in this simple example the input function is implicitly a delta function, it is also 
possible to add a function to describe a varying input function, which is convolved with the 
system response to form the output. In the simplest case, this simply involves modifying 
the basis functions. 
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2.8.2 GLM and compartment models 
The general linear model is a powerful framework for data analysis. Any linear method, 
which can be seen as a straight line regression can be represented in the form of (2.15), but 
it also possible to represent operational equations that may not appear to yield a straight 
line regression in this form. Computationally there are advantages to linearity and the 
GLM parameterisation of the operational equation in terms of parameter estimation: 

• The estimation of coefficients β is a one step, non-iterative procedure, which only has 
one solution. 

• The expected error variance associated with the estimated parameters can be directly 
calculated. 

• Because the estimation procedure is not iterative, it is fast enough to be applied to 
individual pixels to calculate parametric images. 

• If the GLM is applied at the pixel level, then because of the linear properties pixel 
estimates of the parameters may be pooled after estimation. This has advantages when 
pooling to reduce noise or apply smoothing during statistical mapping procedures. 

2.8.3 GLM parameter estimation 
Equation (2.15) can be extended to the practical measurement situation by adding a vector 
e to account for random error: 

 eXc += β   (2.16) 

The best estimator of β in a least squared sense (Press et al. 1987) (Johnson & Witchern 
1998)is given by: 

 ( ) cXXX '' 1−=β   (2.17) 

This result shows that the parameters can be estimated in a one step procedure, which 
involves the inversion of the matrix containing the basis functions describing the model. If 
the uncertainty of the measurement is variable, then a weighting term can be introduced. 
The estimated (co-)variance associated with the estimates can also be estimated: 

 ( ) 1' −= XX22
β cσσ   (2.18) 

This is a very important result since it shows that the uncertainty in the estimates of the 
parameters β is directly proportional to the uncertainty in the measurement of the data. 

2.9 Parametric images 

PET data consists of both a spatial and a temporal component. The spatial element can be 
removed from the data set by choosing a region of interest and the models in this course 
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will be based on such data. However, it is very important not to neglect the spatial domain, 
since it also contains much of the information.  

One way to retain the spatial information in the data is to apply pharmacokinetic models at 
the finest spatial scale, determined by the image digitisation matrix - the pixel. By 
estimating a parameter at each pixel, a map of the parameters spatial distribution can be 
made - a parametric image. This parametric image then contains the most complete, yet 
succinct summary of the data. Parametric images can be used with image statistical 
techniques to test the spatial difference in parameter distribution between two conditions 
e.g. two study groups or longitudinally. 

As has been noted in the previous sections the GLM has desirable properties within which 
to implement methods to calculate parametric images. Part of the modelling effort is to 
develop models and methods, which lead to parametric images, and so linearisations will 
be discussed in detail. Under certain conditions, it is even possible to apply models before 
reconstruction, which has advantages in terms of statistical efficiency and reconstruction 
times. 
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3. Basic pharmacokinetic concepts 

K.L. Leenders, GNIP Project, Groningen, The Netherlands. 

3.1 Introduction 

In this section, some basic concepts of brain uptake of a radiotracer from blood are 
discussed. The water phase of plasma will be considered as the source of the radioactivity 
that is taken up. This is the physiological space from which the PET signal is supplied to 
the brain and in which the time course of the brain input signal can be measured. Using this 
starting point also allows utilisation of well-known concepts and quantitative measures 
used in clinical pharmacokinetics. It is worthwhile to underline that the PET scanner 
intrinsically measures radioactivity per volume  (units: Bq.ml-1), whereas organ size is 
defined in terms of mass units (g) to avoid conversion to volume using density. This 
remains a possible source of confusion when reading the literature.  

Depending on the transport rate of the radiotracer across the blood-brain barrier or its 
interaction with the brain parenchyma, the uptake of signal represents either: information 
concerning the blood-brain barrier transport, or specific brain tissue binding mechanisms, 
or both. Only tracers that cross the blood-brain barrier rapidly are suitable for regional 
perfusion measurements. 

3.2 Flow and perfusion 

In physics and engineering texts the expression, 'flow rate' means 'volume flux' (SI units of 
l⋅s-1, litres per second). Many biological phenomena take place on a time scale of min. and 
volumes are of the order of ml. Systemic blood flows (volume fluxes) are therefore 
normally in units ml⋅min-1. The symbol Φ will be used in this text to denote volume flux. 

Delivery of substrates to tissue, however, depends on the volume flux per unit tissue 
volume. Consider the supply of oxygen to tissue. The amount of oxygen with a 
concentration ca in arterial blood supplied to the tissue sample per unit time is ca times Φ. 
However, the oxygen requirements of the tissue sample depend on its volume. A sample 
with a larger volume will require more oxygen per unit time to sustain it than a sample 
with a smaller volume. So in order to assess the sufficiency of supply of oxygen (or any 
other nutrients) we use the concept of perfusion (volume flux / tissue volume). 

In the literature on PET, perfusion is often simply called 'blood flow'. Since an aim of 
this manual is to introduce the student to current PET literature, the term ‘blood flow’ will 
be used to describe perfusion with the symbol F throughout this text. Volume flux 
and e.g. systemic circulation 'blood flow', will be designated by the symbol Φ. Since 
these concepts are often confused in publications, it is important to check the direct or 
implied definition each time. 

3.3 Equilibria 

One definition of equilibrium given by Webster's dictionary is "an Equality of weight or 
force; an equipoise or a state of rest produced by the mutual counteraction of two or more 
forces." This definition concurs analogously with the thermodynamic definition of equal 
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temperatures. Closer to the definition which will be used in this text is the concept of 
equilibrium in a chemical reaction. (Le Châtelier’s principle).  

In the case of exchange between compartments in a pharmacokinetic model, a condition of 
equilibrium can theoretically be defined as having been reached when the rate of change of 
the concentration in the compartments is zero. The conditions for equilibrium can also be 
defined mathematically by setting the rate of change in the differential equations 
describing the system to zero (Delforge et al. 1993).  However, this idealised situation is 
not normally encountered in PET since the system is not closed and tracer is normally 
being continuously lost e.g., by kidney clearance. Different terms for equilibria between 
plasma and tissue activity concentrations are used: 

Secular equilibrium: Equilibrium conditions where the net rate of exchange between the 
compartments is small and total loss from the system is zero (two orders of magnitude 
smaller than the rate constants). This is the practical equivalent of the theoretical 
equilibrium definition above. 

Pseudo-equilibrium: Net exchange between the plasma compartment and the tissue-
compartments is small but the tracer loss from the plasma compartment is not negligible. 
The plasma curve has a small negative slope. In this situation, the ratio of tissue to plasma 
concentration will be slightly higher than in the true equilibrium situation. 

Transient equilibrium: With reference to neuroreceptor binding studies this is a term used 
for the maximum turning point of the total tissue curve. Although at this point the change 
of concentration in tissue is zero, there may still be exchange between tissue and blood 
compartments and the total loss from the system is not negligible (loss from non-specific 
binding). The ratio of tissue to plasma concentration will be higher than at true 
equilibrium. 

Steady state: Can best be defined in terms of a single compartment, rather than between 
compartments as for equilibria. The net flux of tracer through the compartment under study 
is stable; there is a constant turnover. The total amount leaving is identical to the total 
amount entering the system. However this compartment may receive or supply other 
compartments with which it is not in equilibrium. e.g. The free compartment in a two 
tissue-compartment, irreversible binding model, when it is in equilibrium with plasma. 

3.4 Partition coefficient and volume of distribution 

The partition coefficient between two compartments is defined as the ratio of their 
equilibrium concentrations (see 3.3). However, the concept of volume of distribution 
which is numerically identical to partition coefficient, as determined in in-vitro systems, 
warrants extra discussion. 

The term "volume of distribution" (Ganong 1991) is used in pharmacology to denote the 
ratio of the dose administered divided to the concentration of a substance in the systemic 
circulation at equilibrium. The unit of this quantity is a real volume (normally expressed in 
litres) and is conceptually the total volume of all the compartments in which the injected 
substance is distributed. The pharmacological volume of distribution can easily be greater 
than the total body volume (circa 70 l) for organs where the substance builds up. 
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The term "volume of distribution" used in the PET literature is not the same as the 
pharmacological volume of distribution. It is defined as the ratio of the volume occupied 
by the tracer at equilibrium to the total tissue volume and is unitless. The term is used 
since it allows easy access to some of the conceptual ideas associated with the 
pharmacological term. A large volume of distribution is then equivalent to a large partition 
coefficient between the compartments. Again PET volumes of distribution can be much 
larger than 1.0. The following figures seek to illustrate the meaning of partition coefficient 
and volume of distribution based on two examples. Note that the real space occupied by 
the tracer is unknown (and perhaps irrelevant). Conceptual "volumes" are derived from the 
measurement of concentration ratios: 

 

Figure 3-1. Graph illustrating Vd and ρ. Upper left: the lighter colour in tissue represents 
a lower concentration than in blood. Upper right: An example where the tissue 

concentration is higher than in blood (tissue box is darker). Lower left: The equivalent 
conceptual volume of distribution representation of the situation upper left. V1 is a 

fraction of the total volume Vt. Lower right: Equivalent to upper right; V1 is greater than 
Vt. 

This volume is a virtual volume and therefore it is often called the “apparent” volume of 
distribution: the “volume” the tracer would occupy, if the tracer were to adopt the same 
concentration in the tissue as in the blood. For a value of Vd = 0.1 the tissue space would 
have to “diminish”. For a value of Vd = 2 it would need to “expand” beyond the real tissue 
volume. In PET studies, the idea of Vd is borrowed from clinical pharmacokinetics. In 
steady-state PET studies, the Vd is easily derived. In dynamic PET studies we do not 
measure concentrations, but activities and rate constants (see below) between kinetic 
compartments are then estimated. From the rate constants, the distribution volume can be 
derived as shown i.e. in section 8.6 

The exchange of substances between various physiological or biochemical states or spaces 
has led to the concept of compartmental models. It must be kept in mind that kinetic 
compartments are not necessarily identical to physical spaces. The kinetic model only 
attempts to describe the exchange of substance between kinetically defined 
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“compartments” by using rate constants (k’s). Without knowing the concentration of the 
substance in the various compartments the degree of substance exchange (such as transport 
through one or more membranes, enzymatic conversions or binding to specific sites) can 
be quantified by estimating the fraction of substance moving “from one compartment into 
another”. Often rate is confused with rate constant. The former actually designates an 
amount of substance being processed over a period, which is dependent on both substance 
concentration and the turnover constant, whereas the latter directly relates to the degree of 
“system response”.  

3.5 Measures of tracer uptake into brain 

Many entities have been used to describe quantification of substance exchange between 
blood and brain. The most well-known are: 
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Table 2. Pharmacokinetic parameters used in describing blood-brain barrier transport.  Note that the 

definitions here refer to blood-brain barrier transport only. For example, the partition coefficient 

given here is the tissue-arterial concentration ratio. (See also table of symbols and glossary). 

Parameter   Symbol Definition Unit 

Relative volume of 
Distribution  

Vd Apparent volume divided 
by the total volume - see 
text. Numerically 
equivalent to partition 
coefficient.  

Unitless or  
l⋅kg-1 

Perfusion F Flow per unit volume = 
V
Φ  

or 

Flow per unit tissue mass 

ml⋅100g-

1⋅min-1  

or min-1. 

Partition coefficient ρ Tissue concentration over 
plasma concentration 

a

t

c
c (as measured in vitro). 

Unitless 

Extraction  

(Net) 

E Fraction of substance 
moving from blood into 
tissue during a single 
capillary passage.  

Unitless 

Plasma to tissue rate 
constant  

K1 Product of perfusion and 
extraction = F E 

min-1 or 
ml⋅g-1⋅min-1 

Physical flow  Φ The volume flux of a fluid. l⋅min-1 

Permeability P A measure of how easily 
substances cross a barrier. 
e.g. a membrane 

cm⋅min-1 

Surface  S Area available for passage 
per unit volume of tissue. 

cm2⋅g-1 

Permeability surface 
product 

PS  ml⋅g-1⋅min-1 

Methods for determination of blood-brain barrier passage are described in (Pardridge 
1998). 
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3.6 The Renkin-Crone-model 

The Renkin-Crone equation relates (Crone 1964;Renkin 1959) the entities permeability, 
flow, and extraction. For the formula and graphical representation of the relationships see 
the figures below. It is important to realise that blood flow (perfusion) influences the brain 
extraction of a substance and this is, in turn, related to the total amount of substance 
crossing the blood-brain barrier.  

 

Figure 3-2: The Renkin-Crone rigid tube model of capillary. 

Extraction (E) can be expressed by the Renkin-Crone formula which relates E to F and PS: 

 
0

1
=

− −
=−=

tca

vaF
PS

c
cceE  (3.1) 

Where ca and cv is the arterial and venous concentration, respectively. This equation is only 
true at t=0, when the tissue concentration ct is zero. As soon as ct increases, there will be an 
increase in cv, but the extraction will remain constant. At secular equilibrium ca and cv are 
equal, however extraction is still the same as at t=0. The rate constant for the blood brain 
barrier transport is then: 

 EFK =1  (3.2) 

3.7 Graphical examples of how the Renkin-Crone model relates PS to E, K1 and F 

The permeability surface area product (PS) is a composite constant that uniquely describes 
the extractive properties of the capillary bed. 
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High PS. (e.g. water or butanol). If PS is high then the extraction is 100% i.e. 1.0  (Fig. 3-
3), even if perfusion is high (i.e. the time that the molecule spends in the capillary is short 
= short transit time (T) of the blood F = 1/T note the units min-1). Under common 
physiological conditions of perfusion extraction is independent of perfusion only if PS is 
greater than 3. The amount of substance crossing the blood-brain barrier is directly 
proportional to perfusion, when PS is high see Fig. 3-4. Examples of high PS tracers are 
[O-15]water, [O-15]butanol, [C-11]flumazenil. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

Extraction

E (PS = 0.01)
E (PS = 0.02)
E (PS = 0.03)
E (PS = 0.05)
E (PS = 1.0)
E (PS= 3.0)
E (PS = 5.0)

Perfusion [min-1 or ml⋅100g⋅min-1]
 

Figure 3-3. Relationship between perfusion F, extraction fraction E and Permeability 
Surface Product PS. 

Low PS. Extraction is low because during one capillary passage a small amount of 
substance can cross the blood-brain barrier. However, if perfusion is low then extraction 
can still be high in spite of a relatively low PS (Fig. 3-3). K1 is low if PS is low and K1 is 
completely independent of perfusion under these circumstances.  [F-18]Fluorodopa with 
(K1 = 0.03 ml⋅g-1⋅min) is an example of a low PS product tracer. 

 



28 PET Pharmacokinetic Course 2007 

0
0.1

0.2
0.3
0.4

0.5
0.6
0.7
0.8

0.9
1

0 0.2 0.4 0.6 0.8 1
Perfusion [min-1 or ml⋅100g⋅min-1]

K1 [min-1]

PS = 0.05
PS = 1.0
PS = 3.0

 

Figure 3-4. Relationship between perfusion F, K1 and PS-Product 
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4. Cerebral blood flow -single-tissue-compartment model 

R.P. Maguire, Pfizer, USA. 

4.1 Introduction 

Of the total cardiac output of circa 5 l⋅min-1, some 14% (700 ml/min) of the blood flow 
goes to the brain which has only around 2% of the total body mass. This delivery system 
constantly supplies the brain with oxygen and other substrates of metabolism, which enter 
the brain by crossing the blood brain barrier. The neuronal activation studies, which have 
been reported in the last decades in the scientific and popular press, are based on the 
measurement of changes in regional cerebral perfusion and local large vessel blood flow. 
From these experiments, it is easy to see that changes in neuronal activity are very closely 
coupled with perfusion, although the exact mechanisms for the changes are not fully 
understood (Fox et al. 1988). Note that the term perfusion is used advisedly here to 
distinguish the blood flow per unit tissue from the physical flow in (ml/min), although in 
fact the term flow is used freely to denote both in the literature. This section aims to 
introduce the models that are the basis for regional cerebral flow determination with PET. 

4.2 Flow tracers 

In the late 1940’s Kety and Schmidt (Kety & Schmidt 1948) developed a cerebral blood 
flow model, based on the Fick principle that the change in the amount of a substance in 
tissue is given by the arterio-venous concentration difference times the flow. It was noted 
in the previous chapter that, where a tracer has a high permeability surface product, the 
uptake rate of the tracer is be proportional to the flow defining a good tracer for the 
measurement of flow. It was also important for the Kety-Schmidt experiment, that the 
tracer is freely diffusible, so that the concentration of tracer in tissue, at all times, could be 
estimated using the partition coefficient. (The ratio of the tissue to venous blood 
concentration). Examples of tracers which fulfil this criteria are, Nitrous Oxide, Xenon, 
Butanol, Water, Iodoantipyrine. In PET [O-15]Water is the most widely applied blood 
flow tracer. This section will concentrate on methods for quantifying regional cerebral 
blood flow rCBF using this tracer. 

4.3 Partition coefficient  

The partition coefficient ρ, in the context of high extraction tracers, is the ratio of the tissue 
to venous blood concentration and was originally defined by Kety. A partition coefficient 
can be defined very generally as the ratio of the equilibrium concentrations between two 
compartments. In PET the partition coefficient nearly always refers to the concentration 
ratio between any compartment and arterial blood at equilibrium when ca=cv. The absolute 
value for water should depend on the water content of tissue and the water content of 
blood. It is important, however, to consider the units of measurement when comparing 
calculated values. (Herscovitch & Raichle 1985) quotes a value of 0.9 ml/g based on whole 
brain and blood water measurements equivalent to a value of 1.05 ml brain/ml blood, 
calculated by applying the densities. This should be close to the value measured by PET, 
much lower values have however been observed, (Iida et al. 1993) 0.77 ml/ml due to 
partial volume effects and many investigators have assumed the value 1.00. The effects of 
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an incorrectly assumed partition coefficient are most apparent for studies of long >120 s 
duration, so that the exact value may not be important (Kanno et al. 1991). 

4.4 Kety - Schmidt model and operational equations for PET 

The Fick principle, which is the basis of the Kety-Schmidt method is expressed in equation 
(4.1). 

 va
t cc

dt
dq ΦΦ −=  (4.1) 

qt is the amount of tracer in tissue (mole) 

Φ is the physical blood flow (ml/min). 

In this equation, the symbol Φ has been used for flow to emphasise that this quantity has 
units ml/min and differs from the perfusion. The equation expresses a mass balance 
between the delivery, washout and accumulation of tracer in tissue. The ratio of the tissue 
activity concentration to the venous concentration is the volume of distribution (Vd): 

 

By dividing the equation on both sides by the volume of tissue perfused and applying the, 
the more familiar form of equation (4.2) can be derived. 

 t
d

a
t c

V
FFc

dt
dc −=  (4.2) 

 

Figure 4-1. Single-tissue-compartment model for high extraction tracers (flow model) 

F is the perfusion in units of min-1. 

Vd is the volume of distribution.
 

By solving equation (4.2) for Ct, the operational equation (4.3) for PET can be derived. See 
also the notes on delay and dispersion below. 
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4.5 Decay 

The half-life of O-15 is 123 s (decay constant 0.338). Note that the equations here as in 
other parts of this text are written in terms of the decay corrected tissue and blood activity 
concentrations. If equation (4.2) is rewritten for data which is not decay corrected, then an 
extra term appears on the right hand side to account for the fractional loss due to decay. 
Since the half-life of O-15 is comparable with the tissue delivery and washout constants, 
the effects of the decay are easily observable. Indeed the accurately known half-life of O-
15 can be used as an internal standard. This is the basis for the steady state (Frackowiak et 
al. 1980) and weighted integration (Carson et al. 1986) methods. 

4.6 Parameter estimation methods 

There are a variety of methods for quantification of blood flow based on the equations 
(4.3). It can be used to directly fit measured data to the single-tissue-compartment model. 
This method has been used, with extensions to the model to account for delay and 
dispersion in order to determine these values for the whole brain. It also gives reasonable 
estimates for large individual regions of interest. Parametric images of flow (images in 
which the pixel values are proportional to flow) can be generated by assuming fixed delay 
and dispersion for the whole brain and applying equation (4.3) to generate an activity 
concentration vs. flow lookup table which is then used to convert integrated images 
between two time points (Lammertsma et al. 1990) .  

Note that although the use of flow measurement to indicate neuronal activity was 
mentioned in the introduction, modelling methods are often not used to generate scaled 
flow images. Instead, integral images of the activity distribution in the cortex for 120 s 
after application of [O-15]Water are acquired. These are monotonically, though not 
linearly related to blood flow, so that regions with a higher flow will have a higher pixel 
value. It is claimed that the statistical methods used to determine the significance of 
observed changes are insensitive to the non-linear relationship between flow and pixel 
value. 

4.7 Delay and dispersion 

As previously noted, flow tracers and [O-15]Water are extracted from blood in the first 
passage through the capillary bed. It is important therefore to measure the time base of the 
input signal accurately (automatic blood sampling). The short delay of ~10 sec and the 
dispersion of the blood signal also become important. Accordingly, the operational 
equations given above must be modified to account for these effects. The dispersion can be 
modelled by a single compartment model, the relationship between the measured and 
actual arterial concentration time courses is given by equation (4.4): 

 ( ) ( )( )tcttc
dt

tdc
aa

d

a *
* 1)(

−−= Δ
τ

 (4.4) 
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Where c*
a is the measured arterial concentration 

ca is the true arterial concentration 

Δt is the delay in units of time. 

and τd is the dispersion constant in units of min. 

This equation can be solved and substituted into the previous operational equations to 
allow fitting for delay and dispersion. It can also be used to correct the delay and 
dispersion of the measured arterial concentration time course if τd and Δt are known. 

4.8 Cerebral blood volume component 

As will be shown later in the text, modelPaul.s of tracers with low extraction commonly 
include a term to account for the small intravascular blood component in the PET region of 
interest. In the human circulation, 54% of blood is in the veins and venules and around 
14% in the arteries, arterioles and capillaries at any one instant (Ganong 1991). If a tracer 
exhibits 100% extraction then the venous blood will be in equilibrium with tissue so that 
the component of the blood volume will be indistinguishable from the tissue signal. 
Although an initial signal attributable to arterioles can be observed, its inclusion in the 
model is debatable. 
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5. Energy metabolism (FDG) and the general two tissue compartment 
model 

W. Müller-Schauenburg, University of Tübingen, Germany.  

5.1 Introduction 

This chapter deals with the important two-tissue-compartment model. It will concentrate 
on measurement of energy metabolism using the most common of these tracers 2-fluoro-2-
deoxy-D-glucose (FDG).  

5.2 The FDG model 

FDG is an analogue of glucose that is extracted from arterial plasma and crosses the blood 
brain barrier into a free pool in tissue. In contrast to the previous section, the extraction 
from blood is low (Extraction: about 20%) so that the signal associated with K1 depends 
more on permeability surface product than on perfusion. The substance is subsequently 
trapped by being metabolised in the mitochondria to FDG-6-PO4 by the action of the 
enzyme hexokinase. If the measurement time of the study is less than 1 hour, 
dephosphorylation (k4) of the FDG-6-PO4 is not observed in the brain (Lucignani et al. 
1993), corresponding to a condition k4=0 in Fig. 5-1, the Sokoloff model for FDG 
(Sokoloff 1978). 

Figure 5-1: The standard FDG two-tissue-compartment model for the concentrations of 
arterial ca, free cf and bound FDG cb The box around cf and cb reflects the PET-pixel 
summing cf and cb. The box around all could not be eliminated and may be interpreted as 
a PET-pixel including fractional blood volume. 

The following equations correspond to.Figure 5-1 
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Although the tracer is an analogue of glucose, it behaves different:  
1. It becomes trapped after phosphorylation.  
2. The influx/uptake of FDG is only proportional to the influx/uptake of glucose not 
numerically identical. The constant of proportionality is called the lumped constant LC, 
converting the metabolic rate constant Ki of FDG to the rate constant of glucose. Finally 
this rate constant is multiplied by the concentration of (inactive) glucose in blood cp

glu , to 
obtain the (e.g.cerebral) metabolic rate for glucose: 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

LC
c

KCMR
glu
p

iglu  (5.2) 

The influx rate constant for FDG Ki 

 ( )32

31

kk
kKKi +

=  (5.3) 

may be understood intuitively by regarding the flow K1 of tracer entering the free pool and 
being subdivided into two fractions, a metabolised/bound/irreversible fraction k3/(k2+k3)  
and a returning/reversible fraction k2/(k2+k3). This is a branching of the primary influx K1 
according to the relative speed of irreversible binding or phosphorylation (k3) and venous 
clearance (k2). The branching works for a stationary flow as well as for any individual 
tracer amount. 

 The description of the standard FDG-system (k4=0) is obtained by solving equations (5.1) 
for k4=0. This is done in two steps: 1. We investigate the system after a tracer amount 
proportional to K1 has entered the first compartment, assuming ca = 0 during the time of 
observing the system.  We thus study a response function IRF(K1,k2,k3,t) (= IRF =  impulse 
response function) describing the behaviour of the two tissue-compartments. 2. 
Subsequently we regard the full input time course ca , i.e we decompose the input into 
many tiny tracer amounts  and sum up all responses, i.e. we convolve the system response 
with the plasma input function: 

 atis ctkkKIRFc ⊗= ),,,( 321  (5.4) 

5.3 "The system behaviour" (IRF) of the two-tissue-compartment model for k4=0. 

Figure 5-1 and (5.1) for k4=0 and ca =0  tell us that any tracer amount entering the free 
FDG-pool will be cleared exponentially with -(k2 + k3). If we call the amount entered for 
shortly " K1" the free FDG  than decreases according to 

 tkk
f eKc )(

1
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Next we calculate cb from cf via (5.1)  
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The total signal ( cf + cb)  (as measured by PET) can then be decomposed in two ways: 
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or equivalently (by summing up the two exponential terms and using 1-
k3/(k2+k3)=k2/(k2+k3), reflecting the fact that the reversible fraction k2/(k2+k3) and the 
irreversible fraction k3/(k2+k3) add up to unity) 
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Figure 5-2: Sketch of equation  (5.7) and (5.8) for [K1,k2,k3]=[0.1,0.14,0.07] min-1. 

5.4 The operational equation for FDG including k4 

The derivation in section 5.3 introduced the concept of dividing the response function into 
components, which are related to compartments of the original model. A derivation of the 
rigorous solution to the model for FDG uptake which includes k4 (important in the liver for 
FDG and a basis for receptor modelling) will be cited first as a result (Phelps, Mazziotta, & 
Schelbert 1986, derivations in the following section, the fractional blood volume Vb being 
omitted in the derivations): 
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Similarly we present an expression for the rCMRglu which will be derived afterwards. By 
assuming literature values for the rate constants, an estimate of the rate of glucose 
utilisation can be calculated based on a measurement ct or ctis made some time after 
equilibration of the plasma and free compartments. 
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 (ct=ctis in 5.12 and 5.13, a formula editor problem, ct=ctis=ctissue=cg=cGewebe) 
(5.12) may be understood as 
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A first step to understand (5.13) is done by omitting the difference between measured and 
calculated: then ctis -cf = cb in the nominator cancels with the cb in the denominator, and Ki 
from denominator of the denominator gets to the nominator. This looks as if we put the 
constants K1 to k4 into the equation to get them out afterwards. But that isn't true. It is just 
opposite: The normalisation of the calculated cb by the calculated Ki in the denominator 
eliminates part of its dependency on the k-values inserted from the literature. Especially 
the dependence of this ratio in the denominator of (5.13) on K1 is completely eliminated. 
(The dependency of the calculated cf  on K1 in the nominator of (5.13) remains.) 

The normalisation gets even more transparent if we apply (5.13) to the case k4=0 
(including α1=0 and α2=k2+k3). Then the denominator of (5.13) reads as 
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If we go even a step further and neglect the latest free FDG entered the free FDG-pool "for 
large t" the influence of the k-values form the literature disappear completely: 

 0
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b
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c cK
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 (5.15) 

In summary: K1 to k4 from the literature eventually enter only in small correction terms. 

An excellent review on the various methods of measuring glucose consumption was 
recently given by Wienhard 2002. He does not only cover single scan approaches of type 
(5.13) but as well the alternative line following  
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described 1984 by Hutchins and 1983 as K-normalisation by Heiss et al., and its 
simplifying normalisation to the integral of ca similar to (5.15) by Rhodes 1983, as well as 
the full dynamic evaluations. (For details of the literature see Wienhard 2002). Comparing 
the approaches (5.16) and (5.13) it is worth mentioning that pure variations in K1 give 
exact results in the approach (5.16) while the varying ("wrong", non-literature) K1 spoils at 
least a little bit the calculated correction-term cf in (5.13). One may argue that pure 
variations in K1 are academic because of physiologic covariations of K1 and k2, but one 
gets at least some insight into the mathematical structure of the approaches. 

5.5 The full derivation of the 2-tissue compartment system 

Solving the equations (5.1) means that we look for the system response to a sharp input 
that results in a start value cf  proportional to K1. We assume for simplicity cf(t=0)= K1, and 
cb(t=0)=0: 

                        ( ) bf
f ckckk

dt
dc

432 ++−=                    
3 4

b
f b

dc k c k c
dt

= −
 (5.17) 

(The general solution for any ca will then be given by the convolution of this system 
response IRF with ca similar to (5.4).)  

It will be shown that we get from (5.17) for cf and cb sums of two exponentials. As an 
intermediate step we have to look at solutions which contain only one single exponential 
term. We can be motivated to regard these funny solutions by looking at real time courses 
at late times, when the faster of the two exponentials has already disappeared. If we regard 
such mono-exponential terms for cf and cb we have a complete solution for (5.17) starting 
at t=0 with some values, where cb is not zero. (These slowest exponential terms form 
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together a so-called pseudoequlibrium. This is a general name for the situation where we 
have constant ratios between the compartments, following the slowest exponential of the 
whole system considered, mostly an exponential originating from a slow decrease in the 
blood.). And we will see that even the two faster exponentials (with identical exponents in 
cf and cb) are a solution of (5.17). We will further see that by regarding these mono-
exponential solutions, we get the equation for the exponents: a quadratic equation giving 
the two exponential constants α1 and α2 as its two solutions. The simplicity of the solution 
is based on the fact that for a mono-exponential term e-αt the time derivative is just a 
multiplication by -α, converting the differential equations (5.17) into ordinary equations, 
which get very simple, because the common exponential factor drops out (it can't be zero). 

Let us start to consider the funny mono-exponential solutions and insert them into (5.17). 
In order to have a strict orientation, in which compartment I am, I want to be so free as to 
call the factors of the exponentials in the free compartment F and in the bound 
compartment B, i.e. cf =F e-αt and cb =B e-αt (sorry for the confusion with flows and Bmax). 
Now (5.17) reads as 

                           ( )2 3 4f f bc k k c k cα− = − + +                3 4b f bc k c k cα− = −  (5.18) 

or by reordering   ( )2 3 4f bk k c k cα+ − =                         3 4( )f bk c k cα= + −  (5.19) 

Since both equations in (5.19) must give consistent ratios cb/cf  we get the predicted 
equation for α 

( )2 3 4 3 4/ /( )k k k k kα α+ − = −   or better (avoiding denominators) 

( )2 3 4 3 4( )k k k k kα α+ − − =  which reads in a sorted way as 

 ( )2
2 3 4 2 4 0k k k k kα α− + + + =  (5.20) 

(5.20) has the solutions (5.10) and (5.11) and reflects two conditions 

 1 2 2 3 4k k kα α+ = + +                1 2 2 4k kα α =  (5.21) 

which are very helpful in converting different versions of equations from the literature. 

We now have to bring to an end the construction of the solution of (5.17) starting from our 
two mono-exponential solutions  1 1

1 1,t t
f bc F e c B eα α− −= =  and 2 2

2 2,t t
f bc F e c B eα α− −= =   with 

 3 1 4 1 1( )k F k Bα= −    and   3 2 4 2 2( )k F k Bα= −  (5.22) 

i.e. a rigid coupling of (F1 , B1) and (F2 , B2) from (5.19), and the initial conditions 
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 1 2 1F F K+ =    and   1 2 0B B+ =   (5.23) 

(5.22) and (5.23) are 4 equations for the 4 unknown constants F1, F2, B1, B2, It is now 
straightforward to start from a F1, calculate F1  B1 B2 F2 as proportional to F1, apply 
the initial condition 1 2 1F F K+ =  to obtain F1 and subsequently go for  F1  B1 B2 F2 
In detail this path reads as 

1 1 3 4 1/( )B F k k α= −  from the coupling (5.22),  

2 1 1 3 4 1/( )B B F k k α= − = − −  via initial condition (5.23),  

2 2 4 2 3 1 4 2 4 1( ) / ( ) /( )F B k k F k kα α α= − = − − −  via the coupling (5.22).  
From the initial condition 1 2 1F F K+ =  we then get 
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(5.24) 

Now we have all parts and write down immediately the components of (5.9) and (5.12) 
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It is a good and easy exercise to verify the initial conditions ( ) ( ) 10 0f tc c K= =  , ( )0 0bc =  
and to specialise (5.25) and (5.26) to  4 0k = , using 1 0α =  and 2 2 3k kα = + . 
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6. Linearisations 

J. Van den Hoff, MHH, Hannover, Germany 

6.1 Introduction 

Compartment models describe the exchange of substances between the compartments with 
coupled linear differential equations. For these differential equations an analytical solution 
can be derived which represents the tissue’s impulse response by a sum of exponential 
functions.  Because all model parameters (with the exception of the influx parameter K1) 
enter the solution in the exponents of the e-functions, the determination of the parameters 
from the evaluation of experimental data requires non-linear fitting procedures. Up to now, 
these procedures are too time-consuming if pixel-by-pixel estimates of the parameters are 
to be done. Alternative data evaluation schemes are thus called for. 

The term “linearisation” will be used in the following discussion for all methods that 
enable the use of linear least-squares fitting procedures for the parameter estimation. These 
methods can be divided in two groups: 

1. methods which are in principle exact and allow the determination of the complete set of 
transport constants of the model, 

2. methods which make use of asymptotic properties of the tissue response and provide 
only restricted information, e.g. volumes of distribution Vd or metabolic rates. 

The present discussion will be limited to the two most important models (as far as PET is 
concerned), namely the single-tissue-compartment model (including the Kety-Schmidt 
model) and the two-tissue-compartment model with irreversible binding (e.g. FDG) or 
reversible binding (e.g. radioligands). 

6.2 Linearisation of the Kety-Schmidt model (CBF) 

In order to facilitate comparisons with results given in the following sections, the equations 
are written with the standard symbols of the single-tissue-compartment model - influx rate 
is K1, and washout rate is k2. For a freely diffusible tracer, K1 equals perfusion and the ratio 
ρ = K1/k2 represents the tissue-blood partition coefficient (ρ). 

Integration of the model equation ta
t ckcK

dt
dc

21 −=
⋅

 between zero and a (variable) time t 

yields: 

 ∫ ∫−=
t t

tat dckdcKc
0 0

21 ττ  (6.1) 

This is not really a solution of the model equation because the tissue concentration appears 
on both sides of the equation. Nevertheless, input and response can simply be treated as 
quantities that are known from the measurement. Therefore, equation (6.1) allows the 
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determination of the transport parameters from a linear two-parameter fit which can easily 
be performed even on a pixel-by-pixel basis. As far as the calculations are concerned, 
equation (6.1) should be used directly instead of one of several possible reformulations. 
With respect to a graphical visualisation of the results, however, it is advantageous to 
transform Eq. (6.1) to the equation of a straight line. 

If equation (6.1) is divided on both sides by the time dependent integral of the arterial 
plasma concentration (Van den Hoff et al. 1993) the equation 

 y(t) = K1 − k2 x(t) (6.2) 

is obtained with 
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The following figure illustrates this transformation: on the left hand, one can see an 
idealised bolus injection for a freely diffusible tracer and the calculated tissue response for 
the indicated values of the parameters. A sampling rate of 5 seconds is assumed for both 
curves. On the right, one can see the transformed data according to Eq. (6.3). 
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Figure 6-1. Linearisation of the single-tissue-compartment system 

Obviously, the data follows the straight line perfectly (with the exception of the first two 
points, which are affected by small inaccuracies of the numerical integration of the time 
activity curves). The resulting straight line intercepts the y-axis at y = K1 and the x-axis at 

 x = Vd =
K1

k2

 (6.4) 
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6.3 Linearisation of the FDG-model (Blomquist approach) 

The linearisation procedure described for the single-tissue-compartment model can be 
extended to the general two-tissue-compartment model.  For the case of irreversible 
binding (e.g. FDG) this has been demonstrated by Blomquist (Blomquist 1990). The 
derivation of this linearized form directly from the model equation is more difficult and 
will not be given here. Instead, use will be made of the known analytical solution: 

 ( ) a
tkk
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=+= +−
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32

1 32  (6.5) 

This equation shows that as far as the total tissue response is concerned the FDG-model is 
equivalent to a system of two independent (“decoupled”) compartments u1 and u2: 

Ca

u1

u2

κ1

κ2

κ3

 

Figure 6-2. The decoupled model which is equivalent to the FDG model 

From the analytical solution given above it follows that the transport constants of this new 
model are related to the parameters of the FDG model by 

 κ 1 =
K1k2

(k2 + k3 )
 (6.6)  

 κ 2 = k2 + k3  (6.7) 

 κ 3 =
K1k3

(k2 + k3 )
 (6.8) 

With these definitions one has, for all times, the identity: 

 21 uuccc bft +≡+≡  (6.9)   
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that is, the measurement of ct alone does not allow the two model configurations to be 
distinguished, namely the “true” FDG model with compartments cf and cb and the 
“decoupled” model with compartments u1 and u2. All properties of the total tissue 
concentration may therefore be derived from any of the two models.  

The decoupled model now allows the following derivation of the Blomquist formula: 

Because the reversible component u1 represents a one compartment system it is treated 
with the linearisation derived in section 6.2. Similarly, the time dependence of the trapping 
component u2 is simply defined by the integral influx: 
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Moreover, u1 = ct - u2. Substituting for u2 the expression from Eq. (6.10) and integration 
yields 
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From these relations the following formula for ct is found: 
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 (6.12) 

This is the Blomquist formula. For the special case k3=0 the Blomquist formula reduces to 
the linearisation of the single-tissue-compartment model. Contrary to the one compartment 
case the rate constants are no longer identical with the linear parameters of the equation. 
Therefore, the parameter estimation is performed by first determining the linear parameters 
(p1-p3) in front of the integrals in Eq. (6.12) with a linear three-parameter fit. In the second 
step the rate constants are determined: 

 ∫ ∫ ∫ ∫ ′+−=
t t t

atat ddcpdcpdcpc
0 0 0 0

321

τ

ττττ  (6.13) 
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with K1 = p1 , k3 =
p3

p1

 and 
1

3
22 p

ppk −=  

6.4 Linearisation of the FDG-model (Gjedde-Patlak Plot) 

The linearisation method presented here has been described by (Gjedde 1982) in general 
terms and more specifically by (Patlak et al. 1983). Because the method is usually simply 
called the “Patlak plot", this terminology is adopted here. 

The Patlak approach is a description of the behaviour of the FDG-model when the free 
FDG in tissue has reached its steady state so that the ratio of concentrations ct/ca becomes 
time independent. This approach therefore can only provide restricted information. The 
simplest derivation makes use of the decomposition into independent components, which 
has been discussed in section 6.3. If one looks at sufficiently late time points after the bolus 
passage of the tracer, the reversible component u1 (which must not be confused with the 
free FDG pool in tissue, cf) will also approach steady state with the tracer in the blood 
pool: 

 acu
2

1
1 κ

κ
→  (6.14) 

The last equation is valid in a strict sense only if ca becomes constant later. It is 
approximately valid if the variations of ca are very slow in comparison to the time constant 
1/κ2 of the reversible component, u1. 

Together with Eq. (6.10) this leads to 
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This equation allows the determination of κ3 as well as of the ratio κ1/κ2 from a linear fit. 
Dividing Eq. (6.15) by ca on both sides results asymptotically in the equation of a straight 
line: 
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A representation of the data in this form is called a Patlak-plot. It allows easily to assess 
whether the asymptotic regime of the tissue response has already been reached, cf. 
Fig. 6-3: 
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Figure 6-3. Time activity curves (left) and Patlak-plot (right). In the Patlak-plot two 
straight lines are indicated. The first one results from a least squares fit to the linear 

portion of the data points. The second one is the straight line expected from Eq. (6.16). 
The shift of the data points relative to the theoretically expected behaviour is explained 

by the rather rapid variations of ca during the late phase. 

In Figure 6-3 an input function is used which varies sufficiently slowly to reach steady 
state but the input function does not vary negligible slowly. Because the input actually 
decreases at late times, u1 is higher than under equilibrium conditions because there must 
be a small net washout from the reversible component in this case. This results finally in an 
increase of the y-intercept in the Patlak-plot without modifying the interesting slope. 

The time constant which controls the approach to steady state conditions is (1/κ2) = 
(k2+k3).  

For brain investigations with FDG the time constant typically is about 5 min, so that a time 
of 20 minutes can be estimated for the approach to steady state. Note that this means “20 
minutes after the rapid variations of ca have stopped” and not “20 minutes after injection”. 

The most important parameter derived from the Patlak-plot is the metabolic rate Ki: 

 
32

31
3 kk

kKKi +
== κ  (6.17) 

which represents the steady state trapping rate of the tracer in tissue. 

6.5 The Logan-plot 

The so-called Logan-plot has been developed for evaluation of investigations with 
reversible radioligands (Logan et al. 1990). Its discussion will be restricted to the case of 
the two-tissue-compartment model. The original derivation concentrated on the behaviour 
of the system after steady state has been reached in the complete system. Because one of 
the time constants of the reversible two-tissue-compartment model is usually very long, 
this would be a rather strong limitation for a valid use of the Logan-plot. The 
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measurements would be either impractical, or simply impossible because of the limited 
half-life of the tracer. In practice, however, the Logan-plot can be applied before steady 
state in the whole system is obtained. 

We will concentrate on the important special case where the rate of release from the 
metabolic compartment is much faster than the washout from tissue, that is we assume 
k4>>k2. 

Now, if one looks (again!) at the equivalent decoupled model: 

Ca

u1

u2

κ1

κ2

κ3

κ4  

Figure 6-4. The decoupled model which is equivalent to the two-tissue-compartment 
model with reversible binding 

The system response is given by: 

 tt
t eec 42

31
κκ κκ −− +=  (6.18) 

The rate constants κ2, κ4 and the influx rates κ1, κ3 are fixed according to the analytical 
solution. In the presently investigated case (large k4) the rate constants are approximately 
given by 

 
κ 2 =

k2k4

k2 + k3 + k4

κ 4 = (k2 + k3 + k4 ) −κ 2

 (6.19) 

That is, κ4 is much larger than κ2. Now, it turns out that the influx κ3 into the rapidly 
exchanging component u2 approaches zero in the investigated limit of a large k4. At the 
same time, the influx into the slowly exchanging component approaches the true influx K1. 
Therefore, the total tissue response is essentially identical with u1, and u2 is approximately 
zero at all times. In other words: the system reacts as a single-tissue-compartment system 
and can therefore be treated analogous to section 6.2.  

The identifiable parameters are 
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 κ 1 ≈ K1 , and κ 2 ≈
k4

k3 + k4

k2  

which is the effective washout of tracer from tissue (k2 has been neglected in the 
denumerator). Because of the reversible transfer into a bound form the washout is reduced 
with respect to the true washout rate k2. The ratio of the two parameters is obviously the 
total volume of distribution of the tracer: 

 Vd =
κ 1

κ 2

≈
K1

k2

k3 + k4

k4

 (6.20) 

which is identical to the expression which is obtained directly from the inspection of the 
original compartment model. 

In the form originally proposed by Logan et al. the linearized equation is not plotted in the 
form that has been discussed in section 6.2 but rather by plotting: 
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In this case, Vd can be identified with the slope of the resulting straight line. Two examples 
of Logan-plots are given in Fig. 5 
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Figure 6-5. Logan plot for small k4 (upper graph) and large k4 (lower graph). 

As has been mentioned in section 6.2 it is not advantageous to use such “graphical” 
representations for the numerical calculations instead of the original form. 

In the first case (upper row) k4 is very small. The plot becomes linear only at late times and 
the slope is not exactly identical with the volume of distribution. Nevertheless the linear 
behaviour is observed well before the system reaches steady state (the slow time constant 
being 2.5 hours in this example!). In the second case (lower row) k4 is four times as large 
as k2. This is the special case discussed above. Here, the plot is linear at all times which 
demonstrates that this case cannot be distinguished from a true single-tissue-compartment 
model. In terms of the decoupled model, this behaviour is explained by the approximately 
vanishing influx into the rapidly exchanging component u2. In terms of the original model, 
the behaviour is explained by a cancellation effect of the contributing fast e-functions 
when adding up the contributions of free and bound tracer. The time dependence in the 
individual pools is by no means describable as a steady state situation. 
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7. In vivo PET imaging understood from the perspective of in vitro 
receptor binding 

Robert B. Innis, MD, PhD, National Institute of Mental Health, Bethesda, Maryland, USA 

7.1 Introduction. 

The purpose of this chapter is to better understand in vivo receptor binding based on in 
vitro receptor binding theory.  This explanation may be particularly helpful for individuals, 
like myself, who were trained with in vitro receptor methods and receptor-oriented 
pharmacology and then wish to apply similar methods to the in vivo situation. 

The following basic concepts will be explained: 

1) In vitro receptor binding concepts will be explained from a mathematical perspective to 
calculate:  

 a) density of receptor sites: Bmax 

 b) affinity of each receptor: 1/Kd 

 c) product of density and affinity:  BP (binding potential) = Bmax/Kd. 

2) Two basic in vitro methods will be described (equilibrium and kinetic approaches) as 
well as the concept that the kinetic rate constants can be used to predict equilibrium values. 

3) A two-chamber device with a semi-permeable membrane will be used as a simple model 
of in vivo receptor binding.  Similar to the in vitro methods, both kinetic and equilibrium 
methods will be used to estimate BP. 

For an excellent review of in vitro receptor binding methods and data analysis, see 
(Wharton & Polak 1993). 

7.2  Derivation of "Michaelis-Menten" equation from Law of Mass Action. 

The theory of in vitro receptor binding derives from earlier studies of enzyme kinetics in 
which a substrate binds to an enzyme and is converted to a product.  For receptor studies, a 
radioligand is used instead of a substrate, and just the binding itself of the ligand to the 
receptor is viewed as the product.  For this reason, quotation marks will be used to refer to 
the equivalent of the "Michaelis-Menten" equation for receptor binding which will now be 
derived. 

The Law of Mass Action for ligand binding is described as follows: 

 LRRL
koff

kon

⎯⎯←
⎯→⎯

+  (7.1) 
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The binding described above is reversible.  The ligand (L) does not form a covalent bond 
with the receptor (R).  Instead, it is adsorbed to the receptor and attracted by non-covalent 
forces, such as electrostatic interactions, hydrogen bonding, and similar lipophilicity.  
Binding of L and R forms the ligand-receptor complex (LR).  The ligand can both "bind 
to" and "unbind from" the receptor.  The terms for these two processes are "association" 
and "dissociation."  The rate constant of association is termed kon; and the rate constant of 
dissociation is koff. 

 Rate of association = kon [L] [R] (7.2) 

 Rate of dissociation = koff [LR] (7.3) 

 

where [] is used to demote molar concentration – e.g., nM or nmol/L.  It's useful to review 
the units of these equations.  Rate is measured as a change in concentration per unit time – 
e.g., nM min-1.  By rearranging the equations, we can see that units of the rate constants 
are: 

  kon:nM-1 min-1 

  koff:min-1 

Please note that the rates can change over time, but the rate constants (kon and koff) are just 
that: constant over time.  One easy way to understand these rate constants is to consider the 
meaning of koff = 0.1 min-1.  This value corresponds to 10% per min - and means that if the 
free concentration of L was kept close to zero, then the concentration of LR would 
constantly decrease by 10% per minute of whatever is present at that time. 

When ligand L is mixed with receptor R, the rate of association is initially greater than the 
rate of dissociation, since [LR] is initially 0, and the rate of dissociation would, therefore, 
equal 0.  Over time, the concentration of L and R will decrease, and, thus, the rate of 
association will decrease.  Conversely, the concentration of LR will increase, and the rate 
of dissociation will increase.  At some point, the rates of association and dissociation will 
be equal, and that special condition is called a dynamic equilibrium.  The equilibrium is 
dynamic, because both the association and dissociation rates are >0.  That is, although 
equilibrium has been reached, the ligand continues to bind and rebind to the receptor, but 
with no net change in the concentration of L, R, or LR. 

Equilibrium implies: Rate of association = Rate of dissociation 

 kon [L] [R] = koff [LR] (7.4) 

With rearrangement: 

 dK
LR

RL
kon
koff

==
][
]][[  (7.5) 
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This ratio of two rate constants must also be a constant and is defined as Kd, the 
dissociation constant. Please note that the units of Kd are those of concentration (nM). 

At this point, we must re-define terms into the units typical of the "Michaelis-Menten" 
equation for receptor binding.  The total concentration of receptors (Bmax) equals those 
with ligand bound and those that are not bound. 

 Bmax = [LR] + [L] (7.6) 

Furthermore, we will re-define [LR] as the concentration of bound ligand (or B), and the 
[L] will be referred to as the free concentration of ligand F. 

 Let [LR] = B    and    [L] = F (7.7)  

Thus: 

 B + [R] = Bmax (7.8) 

 [R] = Bmax – B (7.9) 

  Define a new term: 

 Bmax' = Bmax – B (7.10) 

Bmax' is referred to as the concentration of "available" receptors.  That is, a receptor that 
already has a ligand bound to a sole site is no longer available to bind another ligand. 

From equation (7.5), 

   

 
B
BF

k
k

K
on

off
d

'max==  (7.11)  

substituting from (7.10) and rearranging: 

 
B

BBFKd
)( max−

=  (7.12)  

 FBFBBBFBKd −=−= maxmax )(  (7.13)  

 maxFBFBBKd =+  (7.14)  
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 max)( FBFKB d =+  (7.15)  

 
FK

FBB
d +

= max  (7.16) 

 

The plot of the Michaelis-Menten equation as B vs. F (Bound vs. Free) is hyperbolic with 
an asymptote at Bmax.  That is, if enough ligand is added to saturate all receptors, then 
bound ligand will equal the maximal concentration of receptors Bmax.  Another important 
point on this curve is the Free concentration at 50% Bmax (shown on Figure 7-1).  When B 
= 50% of Bmax, then equation (7.16) can be solved to show that F = Kd.  In another words, 
Kd equals the concentration of free ligand required to saturate 50% of receptors.  We can 
now understand why affinity is inversely related to Kd.  If the affinity of the ligand is high 
for a particular receptor, then only a low concentration is needed to bind many the 
receptors.  In this manner, affinity = 1/Kd; and the ratio of Bmax / Kd is equivalent to Bmax * 
affinity. 
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Figure 7-1.  Saturation binding curve.  As the concentration of Free ligand is increased, 
more and more of the receptors become bound with the ligand.  When all receptor sites 
are saturated, Bound = Bmax.  In addition, the dissociation constant Kd equals the Free 

ligand concentration at 50% of maximal binding.  For this hypothetical situation, Bmax = 
100 nM and Kd = 2 nM. 

Equation (7.16) can be simply rearranged to provide the slope of the saturation curve – i.e., 
B/F. 

 
FK

B
F
B

d +
=

max  (7.17)  

At low concentrations of free ligand (i.e., when F<<Kd): 
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 affinityB
K

B
F
B

d
∗== max

max  (7.18) 

where affinity = 1/Kd. 

7.3 Binding Potential. 

 

The slope (B/F) of the initial portion of the curve (Figure 7-2) is a special constant that 
reflects the ratio of Bmax / Kd.  Please note that a sizeable portion of the initial binding 
curve is, in fact, linear.  That is, if the free level is doubled, then the bound level is 
doubled.  Most PET neuroreceptor studies are performed at minuscule free levels of 
radiotracer so that the ratio of bound to Free is a constant.  As shown above, this special 
constant can also be viewed as the product of Bmax and affinity.  Although not commonly 
considered with in vitro studies, this number is particularly important for in vivo imaging.  
In PET, this number is termed the "binding potential" or BP.  If two individuals differ in 
binding potential for a particular ligand, the one with a higher binding potential could have 
either more receptors (Bmax) or higher affinity or both.  In general (but not always), we 
assume the affinity is the same and that differences in BP reflect differences in Bmax. 
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Figure 7-2. Initial slope of the saturation-binding curve. The slope (or derivative) of this 
curve is B/F.  The initial slope is quite linear until about 20% Bound.  When B and F are 

quite low, the initial slope B/F = Bmax / Kd. 

Binding Potential is much more commonly used term in PET studies than in vitro research, 
because the ligand is administered in "tracer" doses from a pharmacological perspective.  
The tracer occupies only a small percentage of receptors.  Although Bound and Free are 
quite low, their ratio is a constant.  Thus, even if the dose were doubled or cut in half, the 
ratio of Bound to Free should be constant.  In vitro studies commonly study multiple 
concentrations of Free and can thereby derive separate estimates of Bmax and Kd.  At tracer 
doses typically used in PET, only the ratio of these two values (i.e., BP) can be measured. 
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Another important point with regard to the Michaelis-Menten equation is to understand the 
difference between Bmax and Kd.  Bmax refers to the total number of receptors, and Kd refers 
to the affinity of any single receptor.  That is, Kd is a property of the receptors, and for 
most PET studies, all receptors are assumed to have same affinity.  This equality of affinity 
can be demonstrated by a linear Scatchard plot (see below).  Thus, changes in binding 
potential are typically interpreted as changes in Bmax, although additional evidence 
supporting this interpretation is always helpful. 

7.4 Scatchard Plot: linearisation of the "Michaelis-Menten" equation. 

The saturation binding curve generated from the Michaelis-Menten equation is a curved 
line – specifically, an hyperbola.  The equation can be re-arranged into a linear form and its 
graph is called a Scatchard plot.  Rearranging the Michaelis-Menten equation provides: 

 
dd K

BB
KF

B max1
+⎟

⎠
⎞

⎜
⎝
⎛ −

=  (7.19) 

This linear equation has the general form of y = mx + b, where y = B/F, m (slope) = (-
1/Kd), and b (y-intercept) = Bmax/Kd.  Thus, the y-intercept of the Scatchard plot is BP. 

0 50 100
0

25

50
Bmax/Kd = BP = 50

slope = - 1/Kd = -0.5

Bmax =  100

Bound (nM)

B
ou

n
d

/
F

re
e

 

Figure 7-3.  Scatchard Plot.  The hyperbolic saturation binding curve can be re-plotted as 
a straight line via the Scatchard plot.  The x-intercept is Bmax; slope = -1 / Kd; and the y-

intercept= Bmax / Kd = BP. 

 

7.5 Radiotracer methods. 

The term "tracer" has distinct and yet overlapping meanings in nuclear medicine and 
pharmacology.  In the nuclear medicine field, a radio-"tracer" is used to monitor a larger 
group process.  The fate of the radiotracer reflects the fate of the larger group.  George de 
Hevesy received the Nobel Prize in Medicine in 1943, in large part because of work to 
develop the radiotracer method.  A perhaps apocryphal story is told concerning Dr. de 
Hevesy during his days as a junior scientist living in a cheap boarding room that included 
meals.  He strongly suspected that the beef hash served on Friday was merely recycled 
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from the roast beef served on Monday. Although the cook denied this and said the hash 
was made with fresh beef Dr. de Hevesy decided to test his hypothesis.   He is said to have 
added radioactivity to the roast beef on Monday and recovered some of the activity in the 
hash on Friday, thereby confirming the recycling of the meat.  Whether true or not, this 
story can be used to illustrate the radiotracer method.  Let's assume that he uniformly 
distributed the radioactivity in the roast beef on Monday.  If he recovered 50% of the 
activity on Friday, then he would conclude that the cook had recycled 50% of the beef.  
The recovery of the tracer is not the important point.  Instead, the relevant target is the 
amount of beef that has been recycled.  By using uniform distribution of the radiotracer, 
the system was established whereby the percentage recovery of the tracer reflected the 
percentage recycling of the beef.  That is, the nuclear medicine usage of the term tracer is 
that the radioactive label is used to monitor a larger group process.  For PET neuroreceptor 
studies, the radiotracer is used to monitor all the targeted receptors.  Even though only a 
small percentage (perhaps <1%) of receptors are occupied, PET provides numbers that 
reflect the total pool of receptors.  For example, baseline studies provide measures of BP, 
which as described above reflect the total number of receptors (Bmax).  In addition, if a 
subject is imaged twice, changes in the ligand uptake are thought to reflect the total pool of 
receptors.  For example, if a subject is imaged at baseline and then following 
administration of a non-radioactive drug that binds to the receptor, then changes in the 
tracer reflect occupancy of the receptor by the drug.  For example, if drug treatment 
reduces tracer uptake by 50% (for example, from labelling of 1 % of receptors to 0.5% of 
all receptors), then we conclude that the non-radioactive drug occupies 50% of all the 
receptors. 

The pharmacological use of "tracer" refers to doses of the drug that are so low that they 
lack pharmacological effects.  For example, if the minimally effective dose of a drug must 
occupy at least 5% of the receptors, then doses lower than that would be considered tracer 
doses.  Nuclear medicine uses the term "tracer" for an agent that reflects the fate of a larger 
group of homogeneous targets, and pharmacology uses "tracer" for a minuscule dose that 
lacks pharmacological effects.  Both uses of term apply in PET neuroreceptor imaging.  In 
fact, each use of "tracer" is a sine qua non for the other.  As described above, in order for 
the typical Binding Potential value to be a constant for a particular subject, then F and B 
levels must be low – i.e., tracer pharmacological doses must be administered.  Moreover, 
when tracer pharmacological doses are used, the radiotracer will provide a meaningful and 
reproducible measure that reflects the disposition of all the target receptors. 

In summary, the term "tracer" has the meaning in pharmacology of a dose so low that it 
lacks pharmacological effects. Its typical meaning in nuclear medicine is a dose that is low 
enough so that the disposition of the tracer reflects that of all the targets. That is, the mass 
dose is not high enough to interfere with or modify the target itself.  Let's consider the 
specific situation of PET receptor studies. When the tracer is administered, a small 
percentage of the ligand is usually radiolabelled, with the vast majority of ligand non-
radioactive. A typical 11C-labeled radioligand may have only 1 in 1,000 molecules with 
11C, and the other 999 have 12C. These non-radioactive ligand molecules are called carrier". 
If the specific activity of the radiotracer is low, then it will have an even higher percentage 
of non-radioactive 12C-labeled molecules. So, for the injection of equal amount so activity, 
the preparation with lower specific activity will have a higher mass dose of non-radioactive 
compounds. In the extreme, with extraordinarily low specific activity, all the carrier 
molecules will occupy / saturate the receptors and no radioligand will bind. That is, there 
will be no specific binding to be measured with PET. How much total mass dose can be 
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tolerated for neuroreceptor studies so that it is still a "tracer" dose that will reflect the 
disposition of entire pool of receptors? This question has no clear cut-off and depends upon 
how much error can be tolerated in the specific study. For in vitro binding, a commonly 
used guideline is that tracer conditions are achieved if <10% of receptors are bound. That 
is, most in vitro experimenters are happy to be 90% correct. The in vivo situation is more 
complex, has several sources of error, and may not tolerate significant receptor occupancy 
as yet another source of variability. Again without clear consensus, many PET 
neuroreceptor investigators would say that >10% receptor occupancy is clearly 
unsatisfactory; <5% occupancy is acceptable; and <1% is ideal. 

7.6 Kinetic vs. equilibrium measurements. 

It is important to understand that we've discussed two different ways of determining Kd and 
Bmax: kinetic and an equilibrium methods.  Furthermore, the kinetic parameters can be used 
to predict what the equilibrium values would be if the system were allowed to reach 
equilibrium.  Let's review each method. 

7.6.1 Association 
The central equations for the kinetic methods are described in equations (7.2),(7.3) and 
(7.4). The association data are generated by mixing ligand and receptor together and then 
measuring the concentration of L and LR over time.  If the experiment uses tracer doses of 
the radioligand, then only a small percentage of receptors become bound to ligand.  That is, 
the available receptors [R] are essentially constant during the course of the association 
experiment and equal to Bmax.  L and LR are typically separated at various times after 
initial incubation by filtration, in which the free ligand L goes through the filter and LR is 
retained by the filter.  Since this experiment measures the rate of association as well as [L] 
and [R], the association rate constant kon can then be calculated (equations (7.2) and (7.3)). 
Please note that the filtration method is based on the fact that receptors are much larger 
than the ligand and often come with chucks of surrounding tissue membrane. Thus, when 
the solution is passed through a porous filter, water and the small ligand pass through, but 
the receptor (both R and RL) are trapped and retained by the filter, and the retained 
radioactivity can be measured. 

7.6.2 Dissociation 
For the dissociation experiment, L and R are incubated together until binding reaches 
equilibrium.  At time 0 of the dissociation, excess non-radioactive displacer is added to the 
test tube to occupy all the receptors.  [LR] is measured after filtration at various times after 
beginning the dissociation.  This design assumes that whenever a bound ligand comes off 
the receptor, it never binds again, because the large excess of non-radioactive displacing 
agent will occupy and block the site for a radiolabelled compound.  Since the rate of 
dissociation is then measured as well as [LR] over time, the dissociation rate constant can 
then be calculated according to equations (7.2) and (7.3). 

These two kinetic experiments generate the association and dissociation rate constants: kon 
and koff.  As described in equation (7.5), the ratio of these two constants is the equilibrium 
dissociation constant, which itself is inversely related to affinity.  Thus, equilibrium values 
can be predicted from kinetic rate constants.  Furthermore, if the kinetic experiments are 
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performed at varying concentrations of ligand (F), then Bmax can also be estimated from 
kinetic experiments. 

7.7 Summary of in vitro methods. 

Binding Potential is the most common outcome measure for PET neuroreceptor studies, 
because the radioligand is administered at "tracer" doses, in both the nuclear medicine and 
pharmacological senses.  At these low doses, only the ratio of Bmax to Kd can be measured.  
Thus, PET seeks to measure the initial slope of the saturation binding curve (Figure 7-2), 
which is equivalent to y-intercept of the Scatchard plot (Figure 7-3).  The next section will 
show how these in vitro methods can be extended to in vivo receptor binding using a 
simple two-chamber device.  

7.8 Two-chamber model of in vivo receptor binding. 

Consider the following two-chamber model with a semi-permeable membrane in the 
middle.  The volumes of each chamber are identical, and the membrane will be permeable 
to small ligands like radioligands but not to large proteins such as albumin.  What would 
happen if we instantaneously added a tracer at 4 nM concentration into chamber and at a 
well-mixed uniform concentration?  Let C1 be the concentration of tracer in chamber 1, 
and C2 the concentration of tracer in chamber 2.  Of course, the tracer would diffuse 
equally in both chambers and ultimately reach a concentration of 2 nM on both sides.  The 
concentration gradient would drive the rate of exchange between the two chambers.  When 
equilibrium is achieved, the concentrations of tracer are the same on both sides of the 
membrane, and no further net flow will occur.  However, note that this is a dynamic 
equilibrium, so that tracer flows from chamber 1 to chamber 2 and vice versa, but the rate 
of flow is the same in both directions. 

Similar to the in vitro equations (7.2) and (7.3) above: 

 Forward rate (from chamber 1 to chamber 2) = k1C1 

 Reverse rate (from chamber 2 to chamber 1) = k2C2 

Equations of this type are first order and follow an exponential process, as shown in Figure 
7-4.  The equilibrium value for both chambers is 2 nM.  Because it's an exponential 
process, the concentration will reach half way to its equilibrium value in one half-life 
(T1/2).  Thus, after one T1/2, C1 will go from 4 to 3 nM – i.e., half the way to 2 nM.  
Similarly, in the next T1/2, C1 will go from 3 to 2.5 nM – i.e., half the way from 3 to 2 nM. 

Exp #1: Initial Conditions: 

C1 

 

4 nM 

 

C2 

 

0 nM 
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Figure 7-4.  Time course to reach equilibrium.  The volumes of both chambers are the 
same.  Thus, the final concentration of tracer will be 2 nM distributed equally in both 

chambers.  The concentrations in both chambers change in an exponential fashion – i.e. 
they reach half way to the equilibrium goal within the subsequent T1/2. 

Now let's consider a slightly different situation in which albumin is added to chamber 2 at 
a concentration such that it will bind 2/3rds of the tracer.  That is, within the right hand 
chamber, 1/3 of the tracer will be free, and 2/3 will be bound to albumin.  When 
equilibrium is achieved, the level of Free tracer (not total tracer) will be the same on both 
sides of the membrane.  That is, the component of the ligand that will have the same 
concentration is the one that is available to cross the membrane – i.e., the Free tracer.  
Since albumin cannot cross the membrane, then the tracer bound to albumin is bound up 
and thereby removed from the concentration gradient that drives the flow of tracer from 
one side to the other.  To understand this new situation, we'll need nomenclature to 
describe the free and bound component of tracer.  In addition to C2 as a measure of the 
Total concentration of tracer in chamber 2, we will also need a term for the concentration 
of Free tracer, as well as the fraction of Total tracer that is Free. 

 F1 = concentration of Free tracer in chamber 1 

 F2 = concentration of Free tracer in chamber 2 

 f1 = fraction of Total tracer in #1 that is free 

 f2 = fraction of Total tracer in #2 that is free 

 F1 = f1 C1 (7.20) 

 F2 = f2 C2 (7.21)  

In this particular situation, f1 = 1 (or 100% free) and f2 = 1/3 (or 33%).  The equilibrium 
concentration of tracer in chamber 2 will be 3 nM, and that in chamber 1 will be 1 nM.  
Under equilibrium conditions, F1 = F2 = 1 nM. 

 F1 = f1 C1 = 1 * 1 nM = 1 nM 

 F2 = f2 C2 = 1/3 * 3 nM = 1 nM 
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Under equilibrium conditions, the forward and reverse rates are the same, but are the 
transfer rate constants k1 and k2 also the same?  From equation (7.4): 

  Forward rate = Reverse rate 

 k1C1 = k2C2 (7.22)  

 
1
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k
k  (7.23) 

Thus, the rate constants (expressed relative to total concentration) are inversely related to 
the Total concentration of tracer.  Although the equilibrium value of C2 is three times that 
of C1, its reverse rate constant is 1/3 that of the forward rate constant – leading to equal 
overall forward and reverse rates. 

Exp #2: Initial Conditions: 
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Figure 7-5.  Time course to reach equilibrium with albumin in chamber 2.  The volumes 
of both chambers are the same, but albumin adsorbs Ligand in chamber 2 until 2/3rds is 
bound.  Tracer will continue with a net flow into chamber 2 until Free levels are equal on 

both sides of the semi-permeable membrane. 

NOTE: As described in the section on nomenclature, the number of compartments in a 
model is determined by how many exist in the tissue with the exclusion of the vascular 
compartment. Following this consensus, the simple model described above might be 
referred to as a one-compartment model. However, in this situation, neither chamber has 
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been identified as tissue or vasculature. So, for this unrealistic but heuristic example, the 
device is referred to as a "two-chamber" model. 

7.9 Binding Potential. 

What is the Binding Potential of the albumin?  As shown for in vitro techniques, BP = B/F 
at equilibrium (equation (7.18)).  So, within chamber 2, the ratio of B/F = 2/1 = 2.  Please 
note that the TOTAL concentration of tracer in chamber is 3 nM, with the components of 
B = 2 nM and F = 1 nM.  Furthermore, if this binding is performed under tracer conditions, 
then B/F = Bmax / Kd (equation (7.18)).  Thus, Binding Potential of this tracer for albumin 
would also be 2. 

7.10 Summary of in vivo model. 

This two-chamber simplified model is a heuristic "stepping stone" between in vitro 
receptor binding and in vivo PET measurements.  The in vivo equations are analogous to 
the in vitro situation and demonstrate the concordance between kinetic predictions and 
actual equilibrium values.  Although an over simplification, the purpose of most modelling 
described in this course is to use portions of the kinetic curves to estimate equilibrium 
values.  As applied to this two-chamber model, the task could be understood as follows.  If 
you were provided with only a small portion of the initial curve of Figure 7-2, could you 
predict the final equilibrium ratio of 3 : 1 for C2 : C1?  The answer is yes, since as soon as 
the rate constants can be determined within the noise of the measurements, then their ratio 
is the inverse of the ratio of the equilibrium concentrations (equation (7.23)).  Thus, this 
two-chamber device is a heuristic model, but one that is overly simplistic for several 
reasons.  First, as stated, the data provided here are perfectly accurate and have no noise.  
Secondly, C1 was described as having a fixed initial amount of tracer.  For in vivo 
situations, this chamber will become the blood pool, which is continuously replenished 
with new circulating blood of variable concentrations.  Finally, this model has only one 
tissue chamber (C2), whereas multiple tissue chambers will be reviewed in this course. 

 

7.11 Reference 

 

Wharton, J. & Polak, J. M. 1993, Receptor autoradiography principles and practice 
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8. Receptor kinetics - modelling and practical approach 

A.A.Lammertsma, PET Centre VUmc, Amsterdam, The Netherlands. 

8.1 Introduction 

An important aspect of PET is its flexibility.  Measurements of blood flow and glucose 
consumption are only two of the possibilities of PET. Of course, together with the 
measurements of oxygen utilisation, they have been the backbone, on which PET has been 
accepted as a quantitative imaging technique of regional (patho)-physiology. However, 
although the study of these parameters is important in many instances (e.g. stroke, 
epilepsy, ischaemic heart disease, and tumours), they only give an overall assessment of 
the tissues. 

 

Figure 8-1. A schematic view of a synapse in the brain, representing a general 
neurotransmitter system.  

Many diseases are thought to be connected to specific neurotransmitter systems. In order to 
gain further insight into the underlying pathophysiology, methods to assess these systems 
are required. PET provides an opportunity by the multitude of labelled tracers that have 
been developed over recent years. Tracers have been developed to study different aspects 
of neurotransmission. For example, for the dopaminergic system (implicated in movement 
disorders such as Parkinson’s and Huntington’s disease), labelled tracers (or ligands) have 
been developed for the synthesis of the transmitter dopamine itself ([F-18]-6-L-
fluorodopa), as well as for post-synaptic receptors ([C-11]raclopride for D2, [C-11]SCH-
23390 for D1) and pre-synaptic receptor transporters ([C-11]nomifensine, [C-11]-CFT, [F-
18]FP-beta-CIT). 
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8.2 Standard ligand-receptor model 

To describe the time course of the uptake of a ligand in tissue, a model is required that 
distinguishes between the different components contributing to the externally detected 
(total) signal.  These are free ligand in plasma, free ligand in tissue, ligand in tissue that is 
not specifically bound, and finally, ligand specifically bound to the receptor under study.  
Note, that with a PET scanner the total activity is measured, including the first three 
“contaminating” signals. 

 

Figure 8-2. Schematic diagram of a three tissue-compartment model. The left block 
indicates the input function, illustrating the corrections that are required to obtain the 

metabolite-corrected plasma curve.  

K1 and k2 describe the transport of ligand from plasma to tissue and vice versa, k3 and k4 
that between free and specifically bound ligand in tissue, and k5 and k6 that between free 
and non-specifically bound ligand. Note, that the units of all rate constants (k2 - k6) are min-

1, except for K1, which is (ml plasma)/(ml tissue)/min. 

Note also, that the input to the tissue is that of the parent tracer (i.e. non-metabolised) in 
plasma. The labelled metabolites could have entirely different kinetics and should not be 
included in the input function.  In fact, in the standard model it has been assumed that the 
(labelled) plasma metabolites do not enter the tissue.  This is often the case for ligands 
used in brain studies, where the metabolites usually do not cross the blood brain barrier.  
When metabolites do cross the blood brain barrier or for body studies, the standard model 
is not valid. 

Finally, note the parameter Vb, which is included to account for intra-vascular activity. 
This is needed, since a region of interest defined on a PET scan will contain a small 
fraction of blood vessels, which also contribute to the total signal. The contribution from 
these vessels, however, is not related to the plasma concentration, but to the concentration 
of whole blood including metabolites. 

The above model contains 7 parameters (6 rate constants and blood volume). The model 
equations become rather complicated and, in the majority of cases, no reliable fits can be 
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obtained. In practice, errors of individual parameters would be far too large. The most 
common way to deal with this problem is to simplify the model further. It is usually 
assumed, that the kinetics of the non-specific component are fast, i.e. there is a rapid 
equilibrium between free and non-specific compartments. This implies that one would not 
be able to distinguish between the two compartments and the availability of free ligand for 
specific binding would be the same as for a system without non-specific binding. This 
simplification results in the following model, which is in general use. 

 

Figure 8-3. Schematic diagram of the standard two tissue-compartment model, assuming 
that the free and non-specific bound compartments reach equilibrium rapidly. 

8.3 Input functions 

The diagram of the standard model illustrates the two measurements involved. An ROI (or 
pixel) defined on a dynamic PET scan provides the tissue time-radioactivity curve. In 
addition, the input function to the tissue (metabolite corrected plasma) and the time course 
of the vascular component (uncorrected whole blood) need to be measured. It should be 
noted that a composite measurement is as strong as its weakest component. Therefore, 
attention should be paid to the measurement of the input functions. 

The traditional method to measure a blood curve is to collect sequential discrete blood 
samples. It is clear, that in the case of PET measurements where the input to the tissues has 
to be measured, these samples have to be taken from an artery, usually the radial artery. 
These samples are then used to measure whole blood and plasma concentrations of 
radioactivity and the fraction of labelled metabolites in plasma. 

Following a bolus injection, initial changes in both blood and tissue are rapid. To be able to 
fit for delay (between blood sampling and tissue), blood volume Vb and K1, the early 
frames after injection should be short, e.g. 5 seconds per frame. During the course of the 
scan, the frame duration can be progressively prolonged, sometimes up to 10 minutes for 
the last frames.  However, the fast frames at the beginning of the scan are only useful if the 
blood samples are collected at a rate which is at least as fast as the frame rate. Therefore, 
collection of the blood curve using continuous withdrawal and on-line detection is 
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recommended, at least during the first 5 to 10 minutes of a study. The withdrawal rate is a 
compromise between high delay and dispersion and excessive loss of blood. In practice, a 
flow rate of 5 ml/min over the first 10 minutes and 2.5 ml/min thereafter can be used.  The 
tubing should be of non-sticking material such as polytetra fluoroethylene (PTFE) and the 
internal diameter should be small (e.g. 1 mm). In addition to the on-line curve, a limited 
number of discrete samples are still required (e.g. 5 during a 1 hour scan), as described 
below. This can be achieved by interrupting the continuous withdrawal for a few seconds. 
This also allows for flushing the blood lines with heparinised saline. It is, however, 
important that the on-line curve is not interrupted during the first 5 minutes, in order to 
measure the peak of the bolus as accurately as possible. 

Once an on-line blood curve has been collected, a few operations have to be performed to 
extract the two input functions required for modelling.  First, of course, corrections for 
detector dead time and possible background from a previous run have to be carried out 
depending on the system employed.  Secondly, the blood curve has to be calibrated, i.e. 
scaled to the same units as the PET scanner. The detector set-up could be cross-calibrated 
against the scanner on a regular basis and a fixed calibration factor (independent of the 
scan) could be used. However, to allow for some variation in the actual diameter of the 
tubing it is probably better to use an individual calibration factor based on the whole blood 
concentrations of the discrete samples (measured in a cross-calibrated well counter). At 
this stage the whole blood time-activity curve has been obtained which, in the fitting 
process, is used to estimate the blood volume component Vb. 

For the model, also the metabolite corrected plasma curve is required. This is obtained as 
follows. First, the ratio of plasma to whole blood concentrations of the discrete samples are 
plotted as a function of time and fitted with a multi-exponential function, the number of 
exponentials depending on the actual curve. When the whole blood curve is multiplied 
with this multi-exponential function, the total plasma curve is obtained. Secondly, the 
fraction of metabolites is plotted as a function of time and fitted to a multi-exponential. 
When the total plasma curve is multiplied with one minus this multi-exponential (parent + 
metabolite = 1), the metabolite corrected plasma curve is obtained. This curve, of course, is 
the more important input function for the model. An alternative approach to the last step is 
not to fit the metabolite fraction with a multi-exponential, but instead to fit the absolute 
level of metabolites in plasma using compartmental analysis. This method does not 
produce an exponential description, but rather an exponential convolution, which is a more 
physiological description. 

8.4 Model equations 

The simplified standard ligand-receptor model (Fig. 8-3) is described by the following 
equations: 

 CPET = (1− Vb ) Ct + Vb Cwb  (8.1) 

with 

 Ct = Cf + Cb  (8.2) 
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dCf

dt
= K1Cp − k2Cf − k3Cf + k4Cb  (8.3) 

 
dCb

dt
= k3Cf − k4Cb  (8.4) 

Each frame in a dynamic PET scan provides a measurement of CPET for a given time.  
Non-linear regression can then be used to find the best fit to the data points, resulting in 
best estimates for the five parameters K1, k2, k3, k4 and Vb. 

Note the difference between cp (metabolite corrected plasma) and cwb (uncorrected whole 
blood).  The reason for this difference has been explained in the previous section. 

Note also, that only the starting equations have been given above.  The explicit solutions of 
the differential equations for cf and cb have not been given.  The final solution can be found 
in the literature . In fact, the solution is the same as that for the FDG model (chapter 5) 
with finite k4. 

8.5 Relationship with pharmacological parameters 

With respect to better known pharmacological parameters, the following relationships 
apply: 
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 k4 = koff  (8.6)  

where 

 Bmax = Receptor concentration 

 kon = Bimolecular association rate constant 

 koff = Dissociation rate constant 

 SA = Specific activity of injected ligand 

 fND = free fraction of ligand in non-displaceable tissue compartment 

The ratio cb/SA gives the concentration of receptors occupied by the ligand.  The specific 
activity SA is required here, since the receptors can be occupied by both labelled and 
unlabelled ligand.  When the specific activity is low, the amount of co-injected unlabelled 
ligand is high and more receptors are occupied.  Bmax - cb/SA represents the concentration 
of free receptors (total - bound). 
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For a tracer alone study, i.e. when the specific activity is high, the cb/SA is small compared 
to Bmax and the equation for k3 simplifies to: 

 maxBfkk NDon=3  (8.7) 

Since the equilibrium dissociation constant Kd is defined by: 

 
Kd =

koff

kon  (8.8) 

it follows that, for high specific activity: 
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The ratio of k3 over k4 is often referred to as binding potential (BP, (Mintun et al. 1984), 
which for tracer alone is: 

 d
NDND K

B
f

k
k

BP max==
4

3

 (8.10) 

It should be noted from the equations that it is not possible to obtain Bmax and Kd 
separately from a single study.  Only their ratio (BPND) can be estimated.  To measure Bmax 
and Kd individually, at least two separate studies need to be performed, one with tracer 
alone, the other with a lower specific activity or during infusion of unlabelled ligand. 

For low specific activity, k3 becomes dependent on cb, which itself is a function of time.  It 
follows that, in this case, first order kinetics do not apply any more.  Consequently both 
equations and solutions become complicated. 

For most ligands, k3 and k4 can not be obtained with any degree of accuracy.  This is due to 
the presence of a strong correlation between various fitting parameters.  The presence of 
noise in the scan data then results in estimates of the parameters with high associated 
standard errors.  For example, noise in the data often results in two local minima, one with 
high k2 and low k3, the other with low k2 and high k3.  However, the ratio of k3 and k4, the 
binding potential BP, tends to be more stable. 

Sometimes even BPND can not be measured accurately.  In that case, it is only possible to 
fit for the total volume of distribution Vd (see also next section): 
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which is still related to Bmax/Kd. 

As mentioned previously, the model assumes that labelled metabolites do not enter the 
tissue. If they do, at least one more parallel compartment, describing the fate of the 
metabolites has to be implemented.  For this approach to be successful, in most cases, 
additional information about the kinetics of the metabolites has to be obtained. 

8.6 Volume of distribution 

In this section the relationship between the volume of distribution and various k values will 
be derived, based on the definition that the volume of distribution Vd is equal to the ratio of 
tissue (ct) and plasma (cp) concentrations at true equilibrium: 

 

Vd =
Ct

Cp

dCt

dt
=

dCp

dt
= 0

 (8.12) 

The differential equation for a single-tissue-compartment model is given by: 

 
dCt

dt
= K1 Cp − k2 Ct

 (8.13) 

At equilibrium: 

 K1 Cp − k2 Ct = 0  (8.14) 

and it follows, that 

 
Vd =

K1

k2

 (8.15) 

For a two tissue-compartment model, the equations are as given in section 8.4: 

 Ct = Cf + Cb  (8.16) 

 

dCf

dt
= K1Cp − k2Cf − k3Cf + k4Cb  (8.17) 

 
dCb

dt
= k3Cf − k4Cb  (8.18) 
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At equilibrium, also dcf/dt and dcb/dt will be zero.  From 

 
dCb

dt
= k3Cf − k4Cb = 0

 (8.19) 

it follows that 
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Therefore 

 p

f

p

bf

p

t
d C

C
k
k

C
CC

C
CV ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
==

4

31
 (8.21) 

From 

 

dCf

dt
+

dCb

dt
= K1Cp − k2Cf = 0

 (8.22) 

it follows that 
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 (8.23) 

and Vd simplifies to 
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Similarly, if one takes into account non-specific binding with rate constants k5 and k6, it 
can be derived that 
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8.7 Practical approach 

In this section a possible skeleton procedure for a first pass analysis of data obtained with a 
new ligand is given.  No refinements are provided.  They always depend on the specific 
properties of the ligand in question. 
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1. Generate metabolite corrected plasma curve and uncorrected whole blood curve.  Check 
that labelled metabolites do not cross the blood brain barrier. 

2. Fit whole brain ROI or total count rate of the scanner (good statistics) for a two tissue-
compartment model, including a blood volume component and delay of the blood curve. 
Alternatively, fit only the early part of this curve using a single tissue compartment 
model, including blood volume and delay. 

3. Fix the delay for all subsequent fits of small ROIs.  Alternatively, shift the whole blood 
and plasma curves. 

4. Calculate the weighting factors for all frames (see section 8.9).  These weighting factors 
take into account differences in count rate and frame duration.  Note that the weighting 
factors should take into account the original counts for the frame (not corrected for 
decay), and the decay correction factor for the frame (the statistics are based on the 
original counts). 

5. Fit a regional tissue time-radioactivity curve (i.e. a region that is expected to have a high 
degree of specific binding) for a single tissue-compartment model.  Always include a 
blood volume component.  This gives K1, k2 or Vd, and Vb. 

6. Fit again for a two tissue-compartment model.  Try both setting k4 to zero (irreversible 
binding) and with floating k4 (reversible binding).  Again, for both fits include a blood 
volume component.  This gives K1, k2, k3, k4 and Vb.  For reversible binding, Vd and BP 
can also be obtained. 

7. Use Akaike (Akaike 1974) and Schwarz (Schwarz 1978) criteria and F-test 
(Cunningham 1985;Landaw & DiStefano III 1984) to establish which model gives the 
best fit.  Do not use the sum of squares: they are always smaller for more parameters.  
Also, check standard errors of possible parameters of interest (see next section). 

8. Repeat steps 1 to 6 for a series of normal volunteers to check variability of possible 
parameters of interest (see next section). 

It is obvious, that the results should be compared with in vitro or ex vivo animal data and 
that (possible lack of) selectivity, i.e. binding to different receptors, should be taken into 
account. 

Finally, it should be clear that analysis of studies without correcting for labelled 
metabolites is useless.  The same is true for studies where the labelled ligand is a racemic 
mixture.  Also, in this case the true input function will not be known and it will not be 
possible to separate the two isomers using standard metabolite analysis techniques. 

8.8 Analysis of results 

This section is restricted to data obtained from single tracer alone studies.  These constitute 
the majority of PET receptor studies.  In addition, the analysis of multiple dose studies is 
very dependent on the actual acquisition protocol used. 
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As mentioned in the previous section, the first step is to check whether the two-tissue-
compartment model consistently provides significantly better fits than the single-tissue-
compartment model. 

If this is the case, BPND values should be used, but only when they are robust (small 
standard errors of the fitted BPND values) and stable (small standard deviation of average 
BPND value for a series of normal subjects).  Otherwise, Vd should be used, calculated 
from: 
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If the two-tissue-compartment model does not provide better fits, Vd from the single tissue-
compartment model should be used: 

 
Vd =

K1

k2  (8.27) 

If a region devoid of receptors with volume of distribution Vdr = K1'/k2' is available, 
binding potential can be calculated from 
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assuming the K1/k2 ratio is the same for target and reference tissue (K1/k2 = K1'/k2').  This 
assumption does not imply that K1 and k2 are the same for both regions, only their ratio.  
This is plausible, since any higher permeability in one direction should be accompanied 
with a higher permeability in the other. 

Note that above calculation can also be used if the target region can only be fitted to a 
single-compartment model.  Assuming there is specific binding (which can be tested by 
predosing or displacing), the failure of the fit would be due to the specific kinetics.  For 
example, if the exchange between free and bound is fast, it is quite possible that the model 
can not detect the specific component as a separate compartment.  However, Vd would still 
be increased. 

If there is non-specific binding, which is assumed to be the same in target and reference 
tissue (k5/k6 = k5'/k6'), the binding potential calculated from Vd will be biased. The 
volumes of distribution for both tissues become 
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respectively.  It then follows that 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
−

=

6

5

4

3

1
k
k

k
k

V
VV

BP
dr

drd
ND

)(

 (8.30) 

However, the bias is only a scaling factor, provided that the level of non-specific binding is 
relatively constant. 

8.9 Weighting of fits 

Time-activity curves are routinely expressed in terms of radioactivity concentrations, i.e. 
there has been an inherent correction for frame duration.  Statistics do not depend on the 
actual counts within a region of interest, but more on overall counts, i.e. for calculating 
weighting factors one can start with the total count rate. 

Suppose T total counts (trues, not corrected for dead-time and decay) are collected in a 
frame of duration L.  Then the total count rate for that frame is R = T/L.  For the total 
counts Poisson distribution can be assumed, i.e. 

 Variance of T = Var(T) = T (8.31)   

 SD(T) = √T (8.32)   

 COV(T) = √T /T = 1/√T (8.33)   

 

Since L has no error: 

 

 COV(R) = 1/√T (8.34)   

 SD(R)=R/√T (8.35)  

 Var(R)=R2/√T (8.36)  
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 Weight(R) = T/R2 = L/R = L2/T (8.37)  

 

The weights given by equation (8.37)  are valid for non-decay corrected data. 

 

If the data are decay corrected, R is not equal to T/L, but 

 

 R = fT/L (8.38)  

 

where f is the decay correction factor for the frame 

 

 f = λT/{exp(-λTs)-exp(-λTe)} (8.39)  

 

with Ts and Te being start and end times of the frame 

 

The corresponding weighting factors (for decay corrected data) are then given by: 

 

 Weight(R) = L2/(f2T) (8.40)  

 

 

 

 

8.10 Comparison of fits 

 

As mentioned in section 8.10, three different tests are commonly used for (statistical) 
comparison of various fits.  These are the Akaike and Schwarz criteria and the F-test 
(Landaw & DiStefano III 1984).  The Akaike information criterion (AIC) is given by: 
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 PSSNAIC 2)ln( +=  (8.41)   

 

where 

 

 N = number of frames 

 P = number of parameters 

 SS = residual sum of squares. 

The fit with the lowest AIC is considered to be the “best” fit. 

The Schwarz criterion is similar: 

 )ln()ln( NPSSNSC +=  (8.42)   

 

Again the fit with the lowest SC is considered to be the best. 

Finally, the F-test is given by: 
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where 1 and 2 stand for the fits with the lowest and highest number of parameters, 
respectively. 

An F-statistic table is required to assess significance. 

It is difficult to indicate which is the better test.  In practice, all three tests are often used to 
check whether they indicate the same best fit.  The Akaike (Akaike 1974) and Schwarz 
(Schwarz 1978) tests can easily be implemented into an (automatic) program.  This is more 
difficult for the F-test. 
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8.11 Reference tissue model 

In the previous section, it was shown that, if a region devoid of receptors is available, 
binding potential can be calculated from the volumes of distribution of the target (specific) 
tissue and this reference tissue. 

However, if such a region exists BP can also be obtained from a reference tissue model, 
where the reference region is used as an indirect input function to the total target region.  
Fitting the target region with the reference region as indirect input function, provides 
estimates for R1, k2, k3 and k4 or BPND.  Again only the estimates of BPND and R1 are 
robust.  R1 is the ratio of K1 for target and reference regions.  This model takes into account 
differences in both delivery and free concentration between target and reference tissues.  It 
avoids the need for measuring plasma concentrations and metabolites and, therefore, does 
not require arterial cannulation. 

A schematic diagram of the reference tissue model (Hume et al. 1992) is given in Fig. 8-4, 
showing both, the target (“specific”) and reference region. 

Cp

Cr

Cf Cb

K1’

k2’

K1

k2

k3

k4
 

Figure 8-4. Schematic diagram of the reference tissue model. Although the plasma input 
function cp is illustrated, the model does not require its measurement. Instead, the 

reference tissue curve cr is used as an indirect input function. 

The differential equations as function of time (t) are as follows: 

 
dCr

dt
= K1

′Cp − k2
′Cr  (8.44) 

 
dCf

dt
= K1Cp − k2Cf − k3Cf + k4Cb  (8.45) 

 
dCb

dt
= k3Cf − k4Cb  (8.46) 

where cp = Metabolite corrected plasma concentration (kBq ⋅ ml−1 ) 

 cr = Concentration in reference tissue (kBq ⋅ ml−1 ) 
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 cf = Concentration of free (i.e. not specifically bound) ligand (kBq ⋅ ml−1 ) 

 cb = Concentration of specifically bound ligand (kBq ⋅ ml−1 ) 

and the rate constants have the same meaning as defined previously. A ‘prime’ indicates a 
rate constant for the reference region. Note, that it is not assumed that K1 = K1' or k2 = k2'. 

As previously mentioned, only the total concentration ct within the “specific” region can be 
measured: 

 Ct = Cf + Cb  (8.47) 

Using R1 = K1/K1', and assuming that the volume of distribution of the not specifically 
bound tracer in both tissues is the same (i.e. k2' = k2·K1'/K1 = k2/R1), results in the 
following relationship between ct and cr (Lammertsma et al. 1996): 

 Ct = R1 Cr + a ⋅ Cr ⊗ exp−ct + b ⋅ Cr ⊗ exp− dt{ } (8.48) 

with  a = (k3+k4-c)·(c-r)/p 

  b = (d-k3-k4)·(d-r)/p 

  c = (s+p)/2 

  d = (s-p)/2 

  p = √(s2-q) 

  q = 4k2·k4 

  s = k2+k3+k4 

  ⊗ = convolution integral 

Using the measured tissue concentrations ct and cr, this equation (8.48) can now be fitted 
for R1, k2, k3 and BPND  (after substitution of BPND = k3/k4), without the need for measuring 
cp. Note, that this operational equation takes into account differences in delivery between 
specific and reference tissue (R1). In addition, it does not assume that cr equals cf. 

8.12 Simplified reference tissue model 

The reference tissue compartment model described in the previous paragraph provides a 
robust estimate of BPND , the parameter of interest in ligand studies, without measuring the 
arterial input function and thereby circumventing arterial cannulation. The estimates of the 
other linear parameters (R1, k2 and k3), however, are often associated with large standard 
errors. In addition, convergence rates are slow. To overcome this problem, a simplified 
reference tissue model reducing the number of parameters from four to three was 
developed (Lammertsma & Hume 1996). 
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Simplification to a three-parameter model is possible if the tracer kinetics are such that it is 
difficult to distinguish between the free and specifically bound compartments. Fig. 8-5 
illustrates the simplified reference tissue model where the compartments for free and 
bound are lumped together. 

Cp

Cr

Ct

K1’

k2’

K1

k2a
 

Figure 8-5. Simplified reference tissue model where the compartments of free and 
specifically bound are not distinguishable. k2a is the apparent (overall) rate constant for 
transfer from the specific compartment to plasma. 

The target tissue can now be described by a single differential equation: 

 
dCt

dt
= K1Cp − k2aCt  (8.49) 

The volume of distribution should be the same as that obtained from the four-parameter 
model. In other words, the apparent rate constant k2a relates to the true rate constant k2 
through: 
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The differential equation for the reference tissue is: 
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Solving for cp  using (8.50) and substituting in (8.49): 
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The new equation for the simplified reference tissue model can now be derived: 
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In contrast to the original reference tissue model described in the previous paragraph, this 
simplified model is only based on three parameters: R1, k2 and BPND . 

The validity of this new three-parameter model compared to the established four-parameter 
model was demonstrated for a variety of PET tracers both in humans and in rats. 
Radiotracers, such as [C-11]raclopride and [C-11]SCH-23390 with reasonably fast 
kinetics, provided in all cases essentially the same BPND  values for both models. In 
addition, the three-parameter model produced small standard errors for all parameters and 
converged rapidly. 

Nevertheless, for new tracers, the validity of the reference tissue model and especially the 
simplified reference tissue model should be checked prior to routine application. 
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9. Steady-state measurements of neuroreceptor binding 

Gitte Moos Knudsen, University Hospital Rigshospitalet, Copenhagen 

9.1 Introduction 

The in vivo determination of the pharmacokinetic constants Kd and Bmax of neuroreceptors 
requires a minimum of two studies at different occupancies. To yield accurate measures in 
both studies, the occupancies have to be determined with the receptors and the ligand in 
complete steady-state, a prerequisite which often is hampered. The pseudo-equilibrium 
method is based on assessing the bound/free ratio at a time when this ratio is assumed to be 
close to its equilibrium value (Farde et al. 1989;Pappata et al. 1988). This approach has 
certain limitations. First, it requires that the brain uptake (K1) is the same for the region of 
interest and for the reference region. Secondly, it assumes that the free and non-specific 
tracer binding in the region of interest is identical to the concentration in the receptor-void 
reference region. For some receptor ligands, computer simulations have shown that the 
brain non-specific binding is higher in the reference region since receptor rich brain 
regions will act as a sink. For other ligands, however, this approach will work sufficiently 
well (Ito et al. 1998). 

There are two principally different ways to create steady-state conditions; either a steady-
state is obtained for the labelled tracer (the bolus-infusion principle) or it is obtained for 
the unlabeled ligand. This section describes how experiments can be designed to ensure 
steady-state conditions. 

9.2 Steady-state of labelled ligand 

In order to attain steady-state conditions, a constant infusion of the tracer can be given. 
This approach is, however, usually rather slow. To speed up the process, an initial 
(priming) tracer bolus injection can be given followed by a constant tracer infusion over a 
longer period, frequently in the order of hours, until equilibrium is obtained in plasma and 
brain (Figure 9-1 ).  
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Figure 9-1 Plasma parent compound (circle) time activity curve and brain time activity 
curves for temporal cortex (+) and cerebellum (x) in a bolus-infusion experiment with 
18F-altanserin. Specific binding (*) for temporal cortex is calculated by subtracting 

radioactivity in cerebellum (representing non-specific bound 18F-altanserin and 18F-
metabolites in ROIs) from radioactivity in temporal cortex. 

In this way, the distribution volume of the tracer can be determined from a single PET or 
SPECT image and one blood sample: 
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where T denotes any time where a steady-state condition is present and fP is the plasma 
free (non-protein bound) fraction of the parent compound. 

Based on data from previous bolus experiments, an algorithm using conventional 
convolution arguments for a prediction of the outcome of a bolus/infusion (B/I) experiment 
can be made (Pinborg et al. 2000). This allows for designing B/I protocols, i.e., 
determining the ratio between the bolus and the infusion doses, that are optimally suited 
for that particular ligand. In cases where receptor densities vary considerably within the 
brain, B/I protocols may be designed for obtaining steady-state in particular brain regions. 

The B/I approach is particularly well suited for studies employing long-lived tracers i.e., 
either SPECT studies, or PET studies with 18F-labeled ligands. The method also provides 
an opportunity of imaging during continuous unlabeled ligand infusion as a powerful 
within-scan method for determining both regional binding characteristics and receptor 
occupancy with tracer and cold ligand, respectively. It should be noted that unlabeled 
ligand may originate from both exogenous and endogenously released sources (Carson et 
al. 1997). Careful assessment of the sources of noise and of the correct timing in receptor 
imaging studies can increase the sensitivity of the B/I method for the detection of 
biological signals (Watabe et al. 2000). 
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9.3 Steady-state of unlabeled ligand 

With this method, first described by Lassen (Lassen 1992), a constant plasma level of 
unlabeled ligand is obtained by either prolonged intravenous infusion or oral 
administration of the unlabeled ligand. The fraction of receptor sites not occupied by the 
unlabeled ligand is measured by using trace amounts of a radioactive ligand binding to the 
same receptor. One of the studies can be made at close to zero receptor occupancy, by 
administering the tracer alone. The tracer studies, i.e., one without and one (or even better, 
more) at constant levels of unlabeled ligand, allows calculation of the unlabeled ligand's 
equilibrium dissociation constant Kd. In the special case when tracer and unlabeled ligands 
are chemically identical, then Bmax can also be calculated. The approach has been applied 
for, e.g., flumazenil (Lassen et al. 1995). 

If the tracer is administered as an intravenous bolus injection, then the distribution volume, 
Vd can be determined from the ratio between the area under the brain and plasma time 
activity curves: 
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In order to extrapolate the areas to infinity, the curves must be followed for so long that 
conventional mono-exponential extrapolation can be used. Alternatively, Vd can be 
determined on the basis of compartmental analysis, or from a bolus-infusion experiment as 
described above. 

 

When the tracer, T, is competing for the same receptor sites as the cold ligand, L, then the 
concentration of bound tracer cb

T, is determined by: 
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Likewise, the concentration of receptor bound ligand cb
L is determined by: 

 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

=

T
d

T
fL

d
L
f

L
fL

b

K
c

Kc

c
Bc

1
max  (9.4) 



86 PET Pharmacokinetic Course 2007 

 

 

Bmax, is the total concentration of receptor sites; cf
T and cf

L, the free concentrations of the 
two ligands in the water phase; and Kd

T and Kd
L, the corresponding affinities for T and L, 

respectively. 

If T is given at a sufficiently high specific activity, then the denominator in Eq. (9.3) may 
be replaced with Kd

T (1 + cf
L/Kd

L) and in Eq. (9.4) with cf
L + Kd

L. In that case, the tracer's 
bound/free ratio (cb

T / cf
T can be calculated from Eq. (9.3) if two (or more) studies are 

carried out, one without and one (or more) in the presence of unlabeled ligand L: 
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From equations (9.4), (9.5) (9.6) it can be seen that, at tracer conditions (T ≈ 0), the 
occupancy of the cold ligands receptor binding is determined by: 
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In the special case where tracer and cold ligand are chemically identical then 
rearrangement of eq. (9.5) and eq. (9.7) leads to: 
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As shown in a previous section, the distribution volume of a tracer is determined by the 
sum of its specific binding and its (free + non-specific) binding, Vf+ns. Under tracer 
conditions, the distribution volume of the specific binding is: 
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in the presence of significant amounts of cold ligand,  

 nsf

c

T
f

T
b

Pcd V
c
c

fV
L
f

L
f

++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  (9.11)  

Rewriting eqs. (9.7) and (9.9) then yields 
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For ligands where Vd(f+ns) is much smaller than Vd(0), then the occupancy is well 
approximated by 1-Vd(L)/Vd (0). Otherwise, the occupancy can be calculated if Vd(f+ns) is 
inferred from either: 

 

1. a separate study using a labelled non-specific stereo-isomer of the ligand 

2. a tissue reference region devoid of the receptor in question 

3. by measuring Vd
L in a condition where specific receptor binding has been completely 

blocked by high amounts of unlabeled ligand 

4. by assuming that Vf+ns equals an experimentally determined value of the brain:blood 
partition coefficient, ρ 

For ligands where reasonable and well-determined regional variations in Vd exist and 
assuming that these variations are solely caused by regional variations in the receptor 
density, Bmax, then rewriting eq. (9.12) leads to: 
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Based on this equation, by plotting regional values of Vd(cf
T) as a function of regional 

Vd(cf
L=0), occupancy and Vf+ns can be determined from the slope and the intercept of the 

regression line respectively. 
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10. Equilibrium measurements via constant infusion 

Richard E. Carson, Yale University,, USA 

10.1 Introduction 

Chapter 7 introduced the concept of the total volume of distribution, Vd. This physiological 
parameter represents the ratio at equilibrium of total tracer in the tissue to that in a 
reference fluid, usually the plasma. In many PET experiments, Vd is determined from a 
study including bolus injection of the tracer followed by dynamic scanning. Although 
equilibrium is not reached in a bolus injection experiment, Vd can be determined by the 
compartment model parameters (e.g., K1/k2 or K1/k2(1+k3/k4) for one-tissue or two-tissue-
compartment models, respectively), or the slope of a Logan graphical analysis. Vd has been 
found to be the most robust parameter to be determinable from dynamic neuroreceptor 
studies. In other words, although individual rate parameters can be estimated by certain 
analyses, they typically have larger uncertainties and are often more affected by errors in 
the assumptions of the model or measurements of the input function or reference region 
than is Vd. In neuroreceptor studies, the binding potential BP can be determined from the 
Vd values in the region-of-interest and a region without specific binding, as in equation 
(8.30).  

A different approach to estimate Vd and BP is to deliver the radioactive tracer as an 
infusion, in order to achieve constant concentrations in the regions of interest and in the 
blood (Carson et al. 1993;Carson et al. 1997;Laruelle et al. 1993) . Note that the phrase 
“constant concentrations” does not mean compensation for radioactive decay, rather that 
the decay-corrected concentrations are constant over time. Multiple short scans can be 
acquired to demonstrate that constant radioactivity levels have been reached. Once 
equilibrium is achieved, Vd can then be measured directly from the concentration ratio of 
tissue (ct) to plasma (cp), i.e., 
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If the binding potential (8.30) is calculated with respect to a reference region with no 
specific binding, no blood measurements are necessary as the calculation only involves 
tissue concentration ratios, as follows: 
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where cr represents the radioactivity value in the reference region. This approach has the 
significant advantage of avoiding measurements in blood, which are often complicated by 
the presence of radioactive metabolites.  

Because of the short half-lives of most PET tracers, it is important to reach equilibrium 
quickly. Therefore, the tracer is typically delivered as a bolus followed by a continuous 
infusion (B/I). Although ideally the infusion protocol could be more complex and could be 
optimised for every individual (Patlak & Pettigrew 1976), this approach would require a 
preliminary bolus study in each subject. Based on population values from bolus 
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experiments, the division of the dose into bolus and infusion components can be 
determined a priori based on an optimisation procedure (see below). 

An example of time-activity data from a B/I experiment is shown in  Figure 10-1 for the D2 
ligand [11C]raclopride (Carson et al. 1997). Constant radioactivity levels are reached 
rapidly in the basal ganglia (top curve, receptor-rich region), and the cerebellum (bottom 
curve, devoid of receptors). BPND can then be calculated using equation (10.2), after 
averaging data over appropriate time intervals. 

 

Figure 10-1 . Region-of-interest data from basal ganglia (λ) and 
cerebellum (ν) following combined bolus and infusion (B/I) 
administration of [11C]raclopride 

10.2 Determination of the infusion schedule 

To deliver a tracer with the B/I approach, the dose must be divided into the bolus and 
constant infusion portions. For tracers, i.e., where the pharmacokinetic behaviour is linear, 
we can predict what a B/I curve will look like from knowledge of a bolus curve. Let f(t) be 
the time-activity curve for any tissue region or the plasma following a bolus administration 
of tracer. Define an infusion protocol H(t) as a combination of bolus plus continuous 
infusion over time T, the length of the experiment: 
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where δ(t) is the Dirac delta function and IT(t) is the infusion function (1/T for 0<t<T and 0 
otherwise). The functions δ(t) and IT(t) have integrals of 1.0 and H(t) is a weighted average 
of the two, normalised so that its integral is also 1.0. The magnitude of the bolus 
component is Kbol, which has units of time (min). A Kbol value of 60 min means that the 
bolus dose is of equal magnitude to 60 min of infusate. It is convenient to express the bolus 
component in this way because it is independent of the duration of the experiment.  

The predicted B/I time-activity curve g(t) can be determined by convolution (⊗) as 
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Equation (10.4) shows that the predicted B/I curve is a weighted average of the bolus curve 
(f(t)) and the infusion-only curve, which is the integral of f(t). The weight Kbol/(Kbol+T) is 
the bolus fraction.  

 

 

Figure 10-2. Predictions of B/I curves for a rhesus monkey 
[11C]raclopride study based on the measured bolus curves.  

An example of the process of selection of optimal Kbol can be seen in Figure 10-2 for a 
region without receptors (A. cerebellum) and with receptors (B. basal ganglia). The curves 
labelled Bolus only are the measured time-activity curves following a bolus injection (f(t)) 
of [11C]raclopride and the remaining curves are calculated B/I curves using equation (10.4) 
with a range of Kbol values. For the cerebellum, a Kbol value of 30 min produces rapid 
equilibrium, with higher Kbol values producing larger overshoots in the early part of the 
curve. For the basal ganglia, the most rapid equilibrium is achieved with a higher Kbol 
value of 90 min. Thus, a single infusion method cannot be optimal for all regions and a 
compromise choice is required.  
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As a general rule of thumb, the region with the highest specific binding should have more 
weight in the selection of Kbol because this region has the slowest kinetics, and thus will 
require the longest time to reach its equilibrium level. A successful B/I result following 
this approach can be seen in Figure 10-1 where the infusion component has brought the 
basal ganglia very close to its equilibrium level at early times. Note, however, that 
although the total radioactivity level in the basal ganglia is nearly equal to its ultimate 
equilibrium level, tracer is still exchanging between free and bound compartments as they 
approach equilibrium; however, the total activity is nearly constant.  

10.3 Transient equilibrium 

Vd is the ratio at true equilibrium between the tissue concentration and plasma. For tracers 
that bind reversibly to tissue, often the tissue:plasma ratio and the ratio of tissue 
concentration values between regions become constant over time following a bolus 
injection. The ratios achieved in this period are different from those achieved during true 
equilibrium. When a constant tissue:plasma ratio is achieved following a bolus injection, 
this ratio is called the apparent volume of distribution (Vapp) and this condition is termed 
“transient equilibrium”, following the nomenclature of parent:daughter radioactive decay. 

The source of the disagreement between the apparent and true volumes of distribution can 
be shown with a brief derivation. Consider the differential equation describing the tissue 
uptake of a reversible tracer with a single tissue-compartment: 

  t
t ckcK

dt
dc

2p1 −=  (10.5) 

where ct is the tissue concentration, cp(t) is the plasma input function, and K1 and k2 are the 
influx and efflux rate constants, respectively. At true equilibrium, all derivatives equal 0, 
Equation (10.5) shows that Vd = ct/cp = K1/k2. Following a bolus injection, eventually the 
plasma tracer activity enters a mono-exponential clearance phase with rate β, i.e., the 
fractional rate of change (dcp/dt)/cp becomes -β. In other words, the plasma clears at a 
constant percent per minute. For reversible tracers, eventually all the tissue radioactivity 
levels also clear at this same fractional rate, i.e.,  

  t
t c

dt
dc β−→  (10.6) 

At this point in time, since plasma and tissue are both clearing at the same fractional rate, 
the ratio between them stays constant, i.e.; transient equilibrium has been achieved. 
Inserting (10.6) into (10.5) , and solving for the tissue:plasma ratio yields, 
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Thus, the terminal plasma clearance rate β produces an increase in the measured 
tissue:plasma ratios so that Vapp > Vd. If β is small with respect to the tissue clearance (β << 
k2), then this overestimation is small. There is no overestimation under equilibrium 
conditions (β = 0). For regions with slower tissue clearance (e.g., due to specific receptor 
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binding), or for tracers with faster terminal plasma clearance rates (e.g., due to rapid 
peripheral metabolism), this effect can be large, producing overestimates of 100% or more. 
In a similar manner to that derived above, the ratios between different tissue regions are 
also affected by plasma clearance. 

An example of this effect can be seen in Figure 10-3, where the Vapp values for regions 
with high, medium, and low specific binding are plotted for the opiate antagonist 
[18F]cyclofoxy (Carson et al. 1993). For the first 70 min, a B/I study was underway, and 
nearly constant radioactivity levels were achieved. At 70 min, the pump infusion was 
stopped, radioactivity levels in all regions dropped, and a new transient equilibrium was 
achieved by ~ 100 min, with much higher tissue:plasma ratios which overestimated the 
true equilibrium ratios. Note that the magnitude of overestimate was larger for the regions 
with high specific binding (smaller k2) than those with no specific binding (larger k2).  

 

Figure 10-3. Discontinued-infusion study. [18F]cyclofoxy was 
administered according to B/I protocol, but the infusion was 
discontinued at 70 min. Tissue:plasma ratios are plotted for thalamus 
(λ), frontal cortex (ν), and cerebellum (υ). 

10.4 Infusions vs. bolus injection 

The B/I methodology has a number of advantages over bolus techniques. First, the method 
of analysis of a constant infusion experiment is simple and is quite “model-independent” 
compared to some of the analysis techniques applied to dynamic bolus studies. Often, the 
data analysis can be accomplished without measurements in blood. If blood is to be used, 
at equilibrium, the arterial:venous differences may be quite small, so venous sampling may 
be adequate instead of the more invasive arterial sampling. For studies of changes in 
neurotransmitter concentrations, control and stimulus binding levels can be measured with 
one tracer synthesis and the total patient study time is shorter.  

However, the choice of bolus or infusion paradigms is not simple. Bolus studies can also 
be analysed without blood measurements by use of various graphical and reference region 
analyses. Also, complete dynamic acquisition of data permits the estimation of more than 
one parameter, e.g., K1 as a measure of blood flow; for B/I studies, if scanning is only 
performed at equilibrium, only Vd can be estimated. Higher levels of radioactivity must be 
synthesised because some will decay in the syringe while the infusion proceeds. The 
optimal time and duration for scanning must be determined in a B/I study. This generally 
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results in a trade-off between achieving equilibrium and maximising statistical counts 
(Watabe et al. 2000). Thus, the statistical quality of bolus studies may be better than B/I 
scans, particularly for short-lived PET tracers. A B/I scan is also more technically complex 
due to the prolonged tracer infusion. Finally, a single value of Kbol may not be appropriate 
for all individuals or for all patient categories, particularly if there are group differences in 
peripheral tracer metabolism.  
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11. Receptor kinetics - simplifications and limitations 

R. A. Koeppe, PET Physics section, Div. of Nuc. Med. University of Michigan, Ann Arbor, 
USA 

11.1 Model reduction 

This chapter reviews the simplification methods used for analysis of receptor studies where 
the parameters of interest are k3 and k4, which give an index of receptor density in the 
various regions of the brain or other organs being studied. The pharmacological 
relationships of the model rate parameters and receptor binding densities are discussed in 
chapter 7.5. 

We begin with a generalised kinetic model with 3-tissue-compartments, consisting of cp, 
the arterial plasma concentration, cf the concentration of free ligand in tissue, cs the 
concentration of specific bound tracer in tissue and cns the concentration of non-specially 
bound ligand (ligand that is not available for binding to the specific receptors under 
investigation) (see Figure 8-2) . 

K1 and k2 represent the blood-brain barrier (BBB) transport rate constants, k3 and k4 
designate the rates of binding and release from specific binding sites, while k5 and k6 
describe the transport between free and non-specifically bound compartments.  It is 
assumed that the input function is corrected for the presence of radiolabelled metabolites, 
and that blood volume Vb will be taken into account although not specifically included in 
this general model diagram.  The rate constant k3, describing the transfer of the material 
from “free” to “bound” compartments is dependent on two parameters which are not 
identifiable from each other, kon (the ligand-receptor association rate) and Bmax density of 
available receptor sites.  The affinity of a ligand for the receptor site, designated by the 
dissociation constant, Kd, is given by the ratio of koff/kon. The ratio of k3/k4, which thus 
becomes kon · Bmax/koff or Bmax/Kd, is also known as binding potential BPND . 

The volumes of distribution (see section 8.6) for this 3-tissue-compartment model are as 
follows: 
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The reduction from the three tissue-compartment to a two tissue-compartment model, 
where the compartments for free (cf) and non-specifically bound (cns) ligand are lumped 
together as shown in Fig. 11-1 is made under the assumption of rapid equilibration 
between the compartments, which makes them kinetically indistinguishable. 

BBB

K 1

k2 k4

k3
C sCf+ns C p

’

’

 

Figure 11-1. Two-tissue-compartment kinetic model configuration with 4 rate parameters 
(K1 - k4) 

This simplification can be applied when the values for k5 and k6 from the three-tissue-
compartment model are high. Model reduction, such as this, is usually necessary for use 
with actual measured dynamic PET data (see 11.2). 

A further reduction to a single tissue-compartment model (Fig. 11-2) is possible when the 
values for k3 and k4 also are high compared to the BBB transport rates K1 and k2, thus 
allowing rapid equilibrium between free and specifically bound compartments. The 
description of the kinetics and the parameter estimates are identical to those of the standard 
flow model (e.g. the Kety-Schmidt model in section 4.4). 
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Figure 11-2. Single tissue-compartment kinetic model configuration (K1 - k2'') 

11.2 Trade-offs 

The quality of PET data limits the number of parameters that can be measured or estimated 
successfully when doing kinetic fitting.  For a model to be accurate, many rate parameters 
may be needed to describe the kinetic behaviour of the radiotracer.  However, the more 
complex a model is, the lower the precision (due to statistical uncertainty) in the estimates 
of individual rate parameters.  Therefore, only a limited number of rate parameters may be 
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estimated from the data with acceptable precision.  On the other hand, when using reduced 
model configurations, the bias in the individual parameter estimates will increase.  A trade-
off between the errors due to more complex versus reduced models has to be made, which, 
in other words, means a trade-off between precision and bias. Adopting a more complex 
model, may result in decreased bias, at a loss of precision. A model simplified in the 
manner shown here may do the opposite: increase bias (inaccuracy) and increase precision 
(decrease random error).  One must be very careful when simplifying models to make sure 
to minimise the increase in bias that occurs due to the simplification.  For example, when 
ignoring delay or dispersion when configuring a flow model (see section 4.7), substantial 
bias may be introduced in the flow estimate.  In actual applications, it is the task of the 
kinetic modellers to assess this trade-off.  They need to know about the effects caused 
when reducing the complexity of the model in order to get more precise estimates of the 
rate parameters such as flow (in flow studies) or binding parameters when performing 
receptor studies.  It is important to know the magnitudes of parameters such as blood 
volume Vb, dispersion or delay, and it also is necessary to know, or at least estimate, the 
magnitudes of the biases that will be introduced into the parameter estimates when other 
parameters are removed during the simplification. 

11.3 Choice of model configuration 

In practice, the choice of a particular model configuration is dependent on the radiotracer, 
the PET ligand used in a study.  The following sections of this chapter focus on different 
ligand categories (namely reversible and irreversible) and the model configurations they 
are best suited for.  A sensitivity analysis is needed to validate that the pertinent model 
parameter or parameters of an applied model are sensitive to changes in receptor density.  
For example, consider the case where the receptor density is changed by a factor of 10, but 
the estimate of an index of binding (e.g. k3, k3/k4, DV) only changes by 10 %.  This 
measure will be an extremely poor index of binding, and should be avoided.  Another 
model configuration with a different index of binding must be found.  It is important not to 
forget the trade-off between bias (when reducing the number of model parameters) and 
precision (for the individual parameter estimates) when deciding which model 
configuration should be applied. 

11.4 Reversible Ligands 

Reversible ligands, such as [C-11]flumazenil, which binds to benzodiazepine receptors and 
is used in the following examples, are ligands that reach equilibrium rapidly, and therefore 
enable short scan duration (30-60 min).  Rapidly equilibrating ligands are better-suited for 
[C-11] tracers (which have a 20 min half-life) than for [F-18] or SPECT tracers which have 
longer half lives.  Reversible ligands, when in true equilibrium, are well suited for use with 
single-tissue-compartment models or the Logan plot graphical method (see chapter 6.5).  
As described above, the index of binding for single-tissue-compartment models, as well as 
for the Logan method, is the total distribution volume of the ligand.  Reversible ligands 
tend to be successfully applied over a larger range of ligand affinities than irreversible 
ligands.  Non-specific binding may be problematic if there is significant binding to non-
specific sites, since the free+non-specific distribution volume is included in the total 
distribution volume.  Increased noise will propagate into the measurement, due to the 
presence of ligand that is not bound to specific receptor sites, and thus is not part of the 
“binding signal.” This may require the use of a “reference region” in order to determine the 
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magnitude of the free+non-specifically bound component of the overall PET measure.  Too 
rapid a clearance will also limit the statistical quality of the estimated binding index, as 
would be the case when the dissociation rate or reversibility is so fast that the tissue curve 
clears before a sufficient quantity of radioactive decay events can be recorded by the 
scanner. 

 

Figure 11-3. [C-11]flumazenil time-activity curves for various regions of the brain  

Figure 11-3 shows tissue time activity curves in various regions of the brain, from the 
lowest binding density region of the brainstem (bottom-most curve), to cortical regions 
showed in the upper curves, which have the highest level of binding.  Note the clearance of 
ligand for all regions, indicating reversible binding.  Even in regions with high binding, 
such as the cortex, there is still quite rapid clearance, which suggests a high value for k4. In 
this case, a single tissue-compartment model describes the shape of the curves quite well, 
particularly for the higher binding regions that equilibrate more rapidly.   

Fig 11-4 shows a comparison of the estimates for K1 when applying both a single-tissue 
and a two-tissue-compartment model. This is an example of performing a sensitivity 
analysis on actual [C-11]flumazenil data to demonstrate how accurately the various model 
parameters can be estimated.  Plots show the mean and standard error of the mean (over 6 
subjects) for K1 when varying durations, up to 90 minutes, are used in the fit.  The 
uncertainty in both single- and two- tissue-compartment models is fairly small and the 
estimated values are approximately the same.  Note that as little as 20-30 min of data is 
required to yield stable results.  Either model configuration could be applied successfully 
to the data.  
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Figure 11-4. The left graph illustrates K1 estimates in a single-tissue-compartment model 
whereas the right graph illustrates K1 in a two-tissue-compartment model. 

However, since the parameter of primary interest in this study would be the density of 
receptor sites, we are less interested in K1 than in an index of binding.  Fig. 11-5 therefore 
shows the estimated total distribution volume Vd for a single-tissue-compartment model 
(for various durations of data included in the fit) and the estimates for k3 from a two-tissue-
compartment model (for the same time durations).  The standard error of the mean reflects 
the precision of the estimate for Vd total and k3.  The precision for Vd total from a single-
tissue-compartment model estimate is considerably better than that for k3 from a 2-tissue 
model, and furthermore, the single-tissue model requires only to 20-30 minutes of data to 
achieve stability in the results.  When only 20-30 minutes of data is used for fitting, k3 has 
over twice the variability as Vd because it is not possible to distinguish between the free 
and non-specific and the specific compartments due to the rapid equilibration.  The 
uncertainty in the individual parameters k3 and k4 is quite high.  However, the estimates of 
k3 and k4, although more variable, are also tightly correlated and hence, the ratio k3/k4 is 
quite stable so that either this ratio (Bmax/Kd) or Vd could be used as an index for flumazenil 
binding. 

 

Figure 11-5. The left graph illustrates Vd estimates fitted with the single-tissue-
compartment model, the right graph shows k3 estimates obtained with the two-tissue-

compartment model. 



102 PET Pharmacokinetic Course 2007 

 

11.5 Irreversible ligands 

Irreversible ligands, such as [C-11]N-methylpiperidinylpropionate (PMP) are characterised 
by a longer equilibration or accumulation time.  Typically, these ligands are better suited 
for use with [F-18] labelled tracers, which have a half-life of 110 minutes, or with SPECT 
ligands.  They are compatible with 2-tissue-compartment models rather than with single-
tissue-compartment models, where k3 and k4 can be estimated separately (k4 tends toward 
the value 0).  An advantage of irreversible ligands is that they often yield high specific to 
non-specific concentration ratios and may allow late static imaging (as is commonly done 
with FDG).  However, there are some disadvantages:   

1. too high an affinity may produce a flow or delivery limited situation (see below); 

2. the successful application of irreversible ligands tends to be limited to a narrower 
range of ligand affinities; 

3. the slow equilibration due to irreversible or nearly irreversible binding dictates longer 
imaging times if the kinetic analysis is to be sufficiently sensitive to changes in 
binding density. 

 

Figure 11-6. Time activity curves of 7 regions in brain using [C-11]PMP.  

Fig. 11-6 shows time activity curves measured from various brain regions for the 
irreversible PET tracer [C-11]PMP.  PMP is not a receptor ligand but a substrate for the 
enzyme acetylcholinesterase (AChE), however the same model configurations for receptor 
ligands are applicable for radiolabelled tracers such as PMP.  The input function for this 
tracer can be compared with the input function labelled “Peak” in the computer exercises, 
in that it does not have a long tail caused by recirculating radiotracer.  After 30 minutes, 
due to rapid metabolism of the tracer, the authentic level of PMP in the blood approaches 0 
(less than 1%).  Because this tracer is absolutely irreversible, one can see from the time 
activity curves that by 40 minutes everything that has entered the brain has either been 
trapped by the k3 process (hydrolysis of PMP by AChE in this example) or it has been 
cleared from brain by the transport process, k2.  K1 and k2,, which depend on Blood flow, 
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are quite similar for the regions of the brain shown here, whereas the net accumulation, 
which depends both on the transport and hydrolysis, is quite different for the different 
brain regions. This indicates different values of k3 for the different brain regions. 

Fig 11-7 shows a 2-tissue-compartment model fit for three of the regions shown in the 
previous figure.  The three parameters, K1, k2 and k3, estimated using a standard non-linear 
least-squares method.  One can see that a simple 3-parameter model fit to the data is quite 
adequate to describe the kinetics of PMP. 

 

Figure 11-7. [C-11]PMP goodness-of-fit 

11.6 Flow and transport limitation effects 

Blood flow or transport rate across the plasma membrane may limit the net amount of 
tracer that is taken up by tissue.  Problematic is the fact that if the affinity of a ligand is too 
high, especially when all tracer in tissue may be bound to specific receptor sites, the 
accumulation of ligand will be dependent primarily upon blood flow or tracer transport rate 
and not on the rate of binding or binding site density.  

Recall equation Error! Reference source not found. that the net uptake for FDG (chapter 
Error! Reference source not found.) was defined as follows: 
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we can examine the how the various rate parameters affect the net accumulation of tracer 
in tissue. 

If k3 is much higher than k2 the ratio k3/(k2+k3) tends towards 1 and the net uptake is 
directly proportional to K1, not to k3 that is the parameter we are interested in measuring.  
This is what is meant by flow or transport limited uptake.  The rate-limiting step is the 
delivery of ligand to tissue, and thus the sensitivity to changes in binding site density is 
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minimal.  Unfortunately, this fact has been ignored often in PET, and many groups have 
developed tracers that have too high an affinity.   

The next 3 figures demonstrate this problem.  Fig. 11-8 is a simulation based on the PMP 
study, using an input function similar to “Peak”, so that the free and non-specific 
concentration can be neglected. The value for k3 changes in a way that every second step 
represents an order of magnitude change.  For the low k3 values, this change in magnitude 
can be seen clearly to produce nearly the same factor change in the tissue concentration.  
However, for high k3 values, a change from 3.16 to 10 in receptor density, roughly a factor 
of 3, only changes the tissue concentration by about 10%.  In higher regions with higher k3 
values, the relative tissue concentration is almost entirely determined by K1, not by k3.   

 

Figure 11-8. Delivery limitation effects for different k3 values in a simulation based on a 
PMP study. In this simulation, free+non-specific binding does not effect signal-to-noise 

Fig 11-9 shows simulated tissue curves for the same k3 values as Fig. 11-8, but with an 
input function similar to the one in the exercises called “Bolus”, but with a constant level 
in the tail of the input function curve to simulate recirculating activity in the blood.  In this 
simulation, the free + non-specific concentration can have a significant influence on the 
sensitivity of the k3 determination.  Both this and the previous simulation do not have noise 
added to the data.  Consider, however, attempting to detect a difference in receptor density 
if there was, for example, a 5% uncertainty in PET due to noise.  Even fairly large changes 
in k3, if k3 were either too small or too large, would be “lost in the noise” and would go 
undetected.   
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Figure 11-9. Delivery limitation effects for different k3 values in a simulation based on a 
PMP study. Free+non-specific has a significant effect signal-to-noise 

Fig. 11-10 shows the relative changes in PET measurement (at 50-60 min post-injection) 
due to the changes in k3 values shown in the previous two simulations.  Note that for latter 
simulation when recirculating activity is present, only k3 values in the range of 0.03 to 0.3 
would cause significant changes in the measured PET data.  This plot suggests that for 
optimal sensitivity to changes in binding density, the value of k3 should be between 0.05 
and 0.5 of the value of k2. 

 

Figure 11-10. Relative changes in PET measurement at 50-60 min after injection.  



106 PET Pharmacokinetic Course 2007 

 

11.7 Reversible versus irreversible radioligands 

Sometimes tracers do not fit neatly in one of the two categories as do flumazenil 
(reversible) or PMP (irreversible).  Often k4 may be small but not 0, and k3 and k4 are not 
large or rapid enough to reduce the model from a two-tissue to a single-tissue-compartment 
model.  An example for such a tracer is [C-11]dihydrotetrabenazine (DTBZ) which images 
binding to the vesicular monoamine transporter (VMAT2).  

Fig. 11-11 shows single-tissue and two-tissue-compartment model fits for DTBZ.  The 
density of monoamine VMAT2 is high only in the basal ganglia and low throughout the 
rest of the brain.  The left graph shows that both regions can be well fitted with a two-
tissue-compartment model.  The right graph gives the residuals to the fit (i.e. the residual 
difference between the actual data and predicted value from the fit), demonstrating the 
goodness-of-fit and the appropriateness of the two-tissue-compartment configuration. 

 

Figure 11-11. Single- and two tissue-compartment model fits for high and low binding 
regions in the brain investigated with DTBZ (left graph). Residuals of the DTBZ fit for 

single- and two-tissue-compartment model (right graph). 

When estimating K1, k2, k3 and k4 with the two-tissue-compartment model, there are 
different indices that can be used for quantifying binding density (Fig. 11-12).  As 
mentioned above, only the basal ganglia (caudate nucleus and putamen) have high binding 
to VMAT2 sites.  The total distribution volume, which is estimated with high precision, 
includes both specific and free+non-specific components.  In the basal ganglia, about 75% 
of the tracer is bound to specific sites while only about 25% is in the free and non-specific 
pool, and thus, the total distribution should provide a good index for VMAT2 binding 
density.  In the cortex, however, well less than half of the activity is due to binding to 
specific sites and therefore the total Vd can not provide a reliable measure of binding.  The 
other possible indices, k3, k3/k4, and Vb do not have the free+non-specific confound, thus 
remove this source of bias, but yield substantially less precise estimates of binding, 
particularly in regions of high binding density.  This is another example of a decision in 
how to trade-off precision vs. bias. 
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Figure 11-12. Binding estimates for several regions in the brain obtained by a two-tissue-
compartment model. 

In cases where there is low precision in the parameter estimates, one finds that different 
sets of rate parameters may equally well describe the same given tissue curve.  Fig. 11-13 
shows simulated time activity curves, with noise, added, having similar total distribution 
volumes, but with different fractions of the activity in the free+non-specific and specific 
compartments.  The filled circles represent data with its fit with a specific distribution 
volume of 12, or 80% of the total Vd, and a free+non-specific Vd of only 3.  The open 
circles represent data with its fit with the specific Vd of only 6.5, and a free+non-specific Vd 
of 7.5.  Note the similarity of the two curves, with only subtle differences in their shapes 
and scales.  When fitting curves such as those simulated here, it is often difficult to 
separate kinetically the free+non-specific from the specific compartment.  In other words, 
measuring a total distribution volume Vd of 14 or 15 can be done very accurately. 
However, because the two compartments equilibrate quite rapidly, it can’t be determined 
kinetically whether tracer is in the free+non-specific or in the specific compartment. 
Therefore, the individual estimates of the free+non-specific and the specific distribution 
volumes are much less precise than the estimate of their sum. 



108 PET Pharmacokinetic Course 2007 

 

 

Figure 11-13. DTBZ compartment differentiability 

An alternative method for estimating the total distribution volume for a reversible 
radiotracer is a graphical method usually referred to as a Logan plot (see chapter 6.5).  The 
integral from time zero to t of the PET divided by the instantaneous PET value at time t 
(ordinate) is plotted versus the integral from time zero to t of the plasma concentration 
divided by the PET value at time t (abscissa).  Note that the denominators of both axes 
contain the instantaneous tissue concentration measure and not the instantaneous blood 
measure, as does the Patlak graphical method used for estimating net uptake for 
irreversible tracers (see chapter 6.4).  The slope of the straight-line portion of this plot is 
equal to the total distribution volume, while the negative of the ratio of the slope to the 
intercept yields an approximation for K1.  This approach is applicable for tracers that can 
be characterised either single- and multiple-tissue-compartment models.  For a tracer 
described by a single-tissue-compartment, the plot will be linear throughout, while for 
multiple-tissue-compartments, there will be a non-linear portion of the graph, which must 
be omitted from the slope calculation.  Fig 11-14 shows Logan plots for two brain regions 
for the ligand [C-11]DTBZ.  Note the slight non-linearity at early times, indicating that a 
single-tissue-compartment model is not quite sufficient to describe [C-11]DTBZ kinetics.  
This results are in good agreement with the kinetic analysis for [C-11]DTBZ described in 
the preceding section.  The linear portion of the curve is indicative of the time needed until 
sufficient equilibration has occurred between compartments.   
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Figure 11-14. [C-11]DTBZ Logan plots of two different regions of the brain. 

11.8 Alternatives for parameter estimation without acquiring arterial blood samples 

Section 8.3 describes the steps needed for acquisition of arterial blood samples in order to 
estimate the arterial plasma concentration of authentic tracer.  From this section, it 
becomes clear that accurate determination of the arterial plasma input function often is 
quite complicated as well as labour-intensive.  Errors in the measured input function cause 
increased uncertainty in the global measures for quantitative parameter estimation (i.e. an 
error in the input function affects PET data from any region to nearly the same extent as 
any other region).  Thus, if it were possible to obtain accurate parameter estimates without 
the use of input functions, one would choose to avoid blood-sampling altogether.  This is 
often not possible, but in specialised cases, quantitative parameter estimates can be made 
from the PET data alone.  Some non-invasive alternatives for parameter estimation 
requiring neither acquisition nor analysis of multiple blood samples are described below. 

In cases where one region within the image field-of-view is devoid of specific binding 
sites, called a reference region, this region can be used to estimate the free+non-specific 
concentration of tracer.  Assuming the free+non-specific distribution space to be regionally 
constant, estimates of parameters from this region can then be used in conjunction with a 
simplified model (not requiring an input function) to estimate the binding parameters in a 
second region which does have a significant level of specific binding (for more detailed 
description see 8.6). 

For rapidly reversible tracers, a protocol using a constant infusion of tracer yields a tissue 
concentration that becomes constant later in the study.  The tissue to blood ratio at steady 
state for later scans time points becomes identical to the total distribution volume.  This 
ratio can be obtained without doing any arterial blood sampling and acts as a relative index 
of binding across the brain.  For example, if one region is three times higher than another, 
the Vd is exactly 3 times higher as well.  Fig. 11-15 shows an example of a continuous 
infusion study for the tracer [C-11]DTBZ.  The input function for these studies is of the 
type from the exercise labelled “Bolus” followed by continuous infusion.  After 40 
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minutes, the activity curves for high and low binding regions have reached stable values. 
Rather than estimating K1 and k2 in order to yield Vd, the ratio can be estimated directly 
from the data. 

 

Figure 11-15. [C-11]DTBZ concentration in several regions of the brain compared to the 
[C-11]DTBZ concentration in plasma. 

Under certain specific conditions, the k3 value for irreversible tracers can also be estimated 
without the use of an input function.  The following conditions must be met: 

1. the input function goes to zero at some point during the study 

2. k4 must be zero (i.e. the k3 process is completely irreversible)  

3. the tissue concentration becomes constant before the end of the study. 

If these conditions are met, and if the rate of transfer of tracer from the first to the second 
tissue-compartment is sufficiently slower than the rate of back diffusion from tissue to 
blood, (i.e. k3 < k2), k3 can be measured from the shape of the tissue time activity curves 
alone.  The calculation of k3 requires that all radioactivity measured by PET at the start of 
the study is in the first tissue (precursor) compartment.  This assumption can be met by 
acquiring sufficiently short scans immediately after injection of tracer.  The calculation 
also requires that all activity remaining in tissue by the end of the study is in the second 
(product) compartment.  It is this second assumption that requires the two conditions stated 
above to be met.  All activity being in the product compartment means there is no tracer 
remaining in the precursor compartment, which in turn requires there to be no more 
delivery of tracer from the blood to tissue (i.e. the input function must go to zero).  Once 
the input function reach zero and the radiotracer in the precursor compartment has either 
been cleared or trapped irreversibly in the product compartment, no further exchange 
between compartments is possible, and the final condition (the tissue concentration 
becomes constant) is achieved. 

The estimation of k3 is made as follows: 
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 PET = CTOT = CPREC + CPROD  (11.5) 

For the first scan it is assumed that: 

 CPROD (1) = 0 and CPREC (1) = CTOT (1)  (11.6) 

The product of the next and following scans will be: 

 CPROD (n) = CPROD (n −1) + k3 ⋅ CPREC (n −1)Δt  (11.7) 

and  

 CPREC (n) = CTOT (n) − CPROD (n)  (11.8) 

The optimal k3 value is that which predicts an amount of product formed by the end of the 
study which equals the total measured PET value.  If k3 is too small, the precursor pool has 
not emptied completely and thus, the amount of product formed by the end of the study is 
less than total.  When k3 is too large, the amount of product reaches the total before the 
measured PET data has become constant, thus overestimating the final amount of product 
formed.  

In this example shown in Fig. 11-16, k3 was set to 0.03 min-1.  The simulated PET time 
activity curve (Total) is given by the large filled circles and bold solid line.  The calculated 
precursor (open figures) and product (filled figures) contributions to the total are given for 
four k3 values.  Only at the correct value for k3 does the concentration of product equal the 
total and the precursor concentration reaches zero at the end of the study. 

 

Figure 11-16. Fitting k3 values for [C-11]PMP without input function or arterial blood 
sampling. 
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12. Data driven methods 

R.N. Gunn, GSK and Oxford University, UK 

12.1 Introduction 

As can be seen from the previous chapters there are a range of PET modelling techniques 
based on a compartmental analysis of the tracer, which return biologically based parameter 
estimates. These techniques may be broadly divided into model-driven methods and data-
driven methods. What distinguishes the two approaches is that model-driven methods 
require the a priori selection of a compartmental model, whereas the data-driven methods 
do not. The model-driven methods use a particular compartmental structure (see Figure 12-
1) to describe the behaviour of the tracer and allow for an estimation of either micro or 
macro system parameters. The data-driven methods are based on properties of all these 
models that generalise to an arbitrary number of compartments and allow for the 
estimation of macro parameters.  

 

Figure 12-1: A range of PET compartmental models commonly used to quantify PET 
radiotracers. These include models for tracers that exhibit reversible and irreversible 

kinetics and models that use either a plasma or reference-tissue input function. Here, the 
compartments are depicted in terms of radioligand binding and constitute either free (F), 
non-specifically bound (NS), specifically bound (SP) radioligand or some combination of 

them. 

 

There are three data-driven methods: graphical analysis, spectral analysis and basis 
pursuit. This chapter will first present the equations for a general compartmental system 
and then show how the data-driven methods are derived from this equation. First, we 
consider systems that use a plasma input-function for quantification. Throughout this 
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chapter, the contribution of blood volume to the observed signal will be neglected for 
simplicity. 

12.2 Plasma Input Models 

Let us consider a general compartmental system that is illustrated in Figure 12-2. From the 

   
  a) Reversible kinetics  b) Irreversible kinetics 

Figure 12-2: General compartmental model 

theory of linear time invariant systems it is possible to derive the general equation for a 
plasma input compartmental model in terms of the systems impulse response function 
(IRF) which is a sum of exponentials (see (Gunn et al. 2001) for derivation), 

 ∑
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ieIRF
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θφ   (12.1) 

where n is the total number of tissue-compartments in the target tissue, φi  and θi  are 
constants which are functions of the individual rate constants (the k's). As an example, for 
the single tissue reversible compartment model [

1 1 1 21, ,n K kφ θ= = = ], 

 tkeKIRF 2
1

−=   (12.2) 

The simplest way to understand the impulse response function is to think of it as the tissue 
curve that would be observed if a true bolus (or spike of activity) could be delivered 
directly to the tissue. In practice, the input function is not a bolus and so the observed 
tissue curve becomes the convolution of the impulse response function with the plasma 
input function, 
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The delivery of the tracer to the tissue is given by ∑
=

=
n

i
ik

1
1 φ  

. 

Reversible Kinetics [ 0iθ > ] For compartmental models which exhibit reversible kinetics 
the volume of distribution, Vd, which is equal to the integral of the impulse response 
function is given by, 
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Irreversible Kinetics [ 0 0,i n nθ θ≠ > = ] For compartmental models which exhibit 
irreversible kinetics (a single trap compartment) the net irreversible uptake rate constant 
from plasma, Ki, is given by, 
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Equations ( (12.3) (12.4) and (12.5) ) are the fundamentals of all the data-driven methods. 
Let us consider how these equations are utilised by the data-driven methods. 

12.2.1 Graphical methods 
The graphical methods of Patlak and Logan have already been covered in Chapter 6, but 
we return to them here briefly to show that they are valid for an arbitrary number of 
compartments. Thus, they are classed as data-driven because they do not require the a-
priori selection of a particular compartmental model. The graphical methods employ a 
transformation of the data such that, after a certain time, a linear regression of the 
transformed data yields the macro system parameter of interest. 

Logan Plot (Reversible Kinetics) The Logan plot with a plasma input (Logan et al. 1990) 
allows for the estimation of the total volume of distribution (Vd) and is given by, 
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c c
≅ +∫ ∫   (12.6) 

From the general expression for a reversible plasma input system the equation for the 
target tissue is given by equation (12.3) and the volume of distribution by (12.4). Without 
loss of generality an ordering on the θ’s is imposed such that θ1 > θ2 > . . . > θn. 
Substituting equation (12.3) into the left hand side of equation (12.6) yields, 
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Substitution of equation (12.4) gives, 
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For suitably large t, 
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Patlak Plot (Irreversible Kinetics) The Patlak plot with a plasma input (Patlak et al. 1983) 
allows for the estimation of the irreversible uptake rate constant from plasma (Ki) and is 
given by, 
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From the general expression for an irreversible plasma input system the equation for the 
target tissue is given by, 
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and the irreversible uptake rate constant from plasma, 

 niK φ=   (12.15) 

Substituting equation (12.14) into the left hand side of equation (12.13) yields, 
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Substitution of equation (12.15) gives, 
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For suitably large t, 
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12.2.2 Spectral Analysis 
Spectral analysis (Cunningham & Jones 1993) characterises the systems impulse response 
function (IRF) as a positive sum of exponentials and uses non-negative least squares to fit 
a set of exponential basis functions to the data. The macro system parameters of interest 
are then calculated as functions of the IRF. Spectral analysis also returns information on 
the number of tissue-compartments evident in the data and is defined as a transparent 
technique. For the majority of plasma input models the observation of all compartments 
leads to only positive coefficients (Schmidt 1999), and as such the spectral analysis 
solution using non-negative least squares is valid. Returning to our general equation for the 
plasma input system (12.3). If we consider a discrete spectrum of values for θ, then this 
equation can be expressed as an expansion on a basis, 
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A set of N values for θj may be pre-chosen from a physiologically plausible range θmin ≤ θj 
≤θmax. Here, the θj values are spaced in a logarithmic manner to elicit a suitable coverage 
of the kinetic spectrum. For data that has not been corrected for the decay of the isotope 
θmin may be chosen as (or close to the decay constant (θmin = λ min-1) for the radioisotope 
and θmax may be chosen as a suitably large value (θmax= 6 min-1). For reversible systems, 
where the calculation of Vd is the goal, the choice of θmin which is slightly bigger than λ 
can suppress the calculation of infinite Vd values from noisy data. An example set of basis 
functions is shown in Figure 12-3.  

   
 a) Plasma input basis  b) Normalised plasma input basis 

Figure 12-3: Set of Basis Functions (Ψ) for a plasma input 

PET measurements are acquired as a sequence of (F) temporal frames. Thus, the 
continuous functions must be integrated over the individual frames and normalised to the 
frame length to correspond to the data sampling procedure. The tissue observations, y, 
already exist in this form and correspond to, 
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and the matrix of kinetic basis functions (or dictionary), Ψ are pre-calculated as, 
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where ts
k and te

k are the sequences of start and end frame times (k = 1,…, F). For all 
practical purposes (i.e. choosing a large enough value for N to obtain a good coverage of 
the kinetic spectrum), this leads to an overcomplete basis (N > F) which by definition is 
non-orthogonal. Thus, conventional least squares techniques are not applicable. To 
determine the fit to the data it is necessary to solve the underdetermined system of 
equations, 

 y φ≅ Ψ   (12.24) 

Spectral analysis uses non-negative least squares (NNLS) to solve this undetermined 
system of equations which corresponds to minimising the following function, 

 2

2
min y

φ
φ− Ψ   (12.25) 

subject to φj ≥ 0. The system macro parameter may then be directly calculated using 
equation (12.4) for reversible systems (Vd) and equation (12.5) for irreversible systems 
(Ki). 

In addition to parameter estimation, spectral analysis allows us to obtain information on the 
number of compartments and the kinetics involved. The number of peaks within the 
spectrum corresponds to the total number of compartments. The position of these peaks 
gives information on the kinetics; a peak at the left corresponds to very fast kinetics which 
represent a vascular contribution, peaks in the middle corresponds to reversible 
compartments and a peak at the right correspond to an irreversible compartment (see 
Figure 12-4).  
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(a) 1 Tissue compartmental model (reversible) (b) 2 Tissue compartmental model (c) 2 Tissue compartmental model 
   (reversible) (irreversible) 

 
(d) Spectral analysis fit of data from (a) (e) Spectral analysis fit of data from (b) (f) Spectral analysis fit of data from (c) 

 
 (g) Spectrum from (d) (h) Spectrum from (e) (i) Spectrum from (f) 

Figure 12-4: Spectral analysis applied to simulated data.  (top row) Model used, (middle 
row) simulated data and spectral analysis fit, (bottom row) spectrum of coefficients (φ ).  

(left column) Reversible 1 tissue-compartment model, (middle column) Reversible 2 
tissue-compartment model, (right column) Irreversible 2 tissue-compartment model.  

12.2.3 Basis Pursuit 
Briefly, a third method called basis pursuit is considered. Basis pursuit denoising (Gunn et 
al. 2002a) offers another approach to solving the linear system of equations given in 
equation 12.24. The difference with this approach is that it does not constrain the 
coefficients (φi) to be positive. Instead a regularization term (

1
μ φ ) is included so that the 

underdetermined system of equations may be solved. Solutions are obtained by minimising 
the objective function,  

 2

2 1

1
2

min y
φ

φ μ φ− +Ψ   (12.26) 

using a quadratic program. Basis pursuit returns parameter estimates, information on the 
number of compartments and type of kinetics and thus is transparent. 
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12.3 Reference Tissue Input Models 

Reference tissue input models were developed for the quantification of receptor binding 
studies which have a region devoid of specific binding that may be used as an input 
function. Particular reference tissue compartmental models have been introduced and 
discussed in Chapter 7. Let us consider a general reference tissue-compartmental system 
(see Figure 12-5).  

   
 a) Reversible target tissue kinetics  b) Irreversible target tissue kinetics 

Figure 12-5: General reference tissue compartmental model (Reversible reference tissue     
kinetics) 

It is possible to derive a general equation for systems using a reference tissue input 
function from linear systems theory (see (Gunn et al. 2001) for derivation). Here, the 
reference tissue is assumed to have reversible kinetics. The target tissue may be described 
in terms of the impulse response function for a reference tissue system, 

 ∑
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As an example, take the simplified reference tissue model, which is the simplest reference 
tissue model and has just a single compartment in both the reference and target regions 
[ ( )0 1 1 1 2 2 1 21 1 ', , , ,m n R R k k kφ φ θ= = = = − = ] 
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The form of the general impulse response function is very similar to the plasma input form, 
except there is the addition of a delta function term. Hence, the general equation for a 
reference tissue input compartmental model is given by, 
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where m is the total number of tissue-compartments in the reference tissue, and n is the 
total number of tissue-compartments in the target tissue, and R1( 0φ= ) is the ratio of 
delivery of the tracer between the target and reference tissue. Here, parameters with primes 
pertain to the reference tissue.  

Reversible Target Tissue Kinetics [ 0iθ > ] For reference tissue models which exhibit 
reversible kinetics in both the target and reference tissues the volume of distribution ratio is 
given by the integral of the impulse response of the system, 
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This measure is useful for neuroreceptor studies as the binding potential may be obtained 
directly from it (assuming that the non-specific binding is the same in both tissues), 
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Irreversible Target Tissue Kinetics  [ 1 10 0,i m n m nθ θ≠ + − + −> = ] 

For reference tissue models which exhibit irreversible kinetics in the target tissue and 
reversible kinetics in the reference tissue the normalised irreversible uptake rate constant 
from plasma is given by, 

 

1

' limi

t
d

m n

K IRF
V

φ

→∞

+ −

=

=
  (12.32) 

In contrast to the plasma input model the coefficients (φi) are no longer guaranteed to be 
positive which means that a spectral analysis approach is not strictly valid (you can easily 
find a counter example by considering equation (12.28)). However, the graphical and basis 
pursuit methods are applicable. 
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12.3.1 Graphical methods 
There are reference tissue versions of the Patlak and Logan graphical methods that are 
valid for an arbitrary number of compartments in the reference and target tissues. These 
may be derived in a similar manner to the graphical methods for a plasma input and this is 
left to the interested reader. Similarly, to the plasma input graphical methods the following 
equations are valid after a suitable time t.  

Logan Plot (Reversible Kinetics) The Logan plot with a reference tissue input (Logan et al. 
1996) is given by equation, 
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Patlak Plot (Irreversible Kinetics) The Patlak plot with a reference tissue input (Patlak & 
Blasberg 1985) is given by, 
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12.3.2 Basis Pursuit 
The general reference tissue model may be solved by basis pursuit (Gunn et al. 2002b) in a 
similar way to the plasma input case. Returning to the general equation (12.29) it can be 
seen that it constitutes a linear combination of the reference tissue time course and this 
function convolved with exponentials. Again, if we consider a discrete spectrum of values 
for θ then the general reference tissue equation can be expressed as an expansion on a basis 
(12.20) with, 
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This leads to the definition of the matrix of kinetic basis functions (or dictionary), Ψ, as, 
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An example set of basis functions using a reference tissue input are shown in Figure 12-6.  
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  a) Reference tissue input basis  b) Normalised reference tissue input basis 

Figure 12-6: Set of Basis Functions (Ψ) for a reference tissue input. 

To determine the fit to the data it is necessary, once again, to solve the underdetermined 
system of equations (12.24) and this can be solved using the identical objective function 
used for the plasma input case equation (12.26). The parameter values are then determined 
from the coefficients using either equation (12.30) or (12.32). The number of peaks in the 
spectrum will inform us of the total number of tissue-compartments in the target and 
reference tissue region. 

12.4 Summary 

The three data-driven methods (Table 12-1) can be derived from the general equation for a 
plasma input (12.3) or reference tissue input (12.29) compartmental model. 

Table 12-1: Summary of the Data Driven methods.  

 

 

The data-driven methods can be implemented quickly on a computer and this is one reason 
why they are particularly useful for generating parametric images. These are obtained by 
applying the methods to each voxel time activity curve from the 4-dimensional data set. 
Figure 12-7 shows a parametric image of the opiate receptor ligand [11C]diprenorphine. 

Data driven method Plasma input Reference tissue input Transparency 

Graphical analysis    

Spectral analysis    

Basis Pursuit    
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Figure 12-7: [11C]Diprenorhpine: Vd image volume generated using basis pursuit and a 
plasma input function (transverse, sagittal and coronal sections displayed). 
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Glossary 1 

Bmax  The maximum number of receptor binding sites in a given preparation. 

BP  Binding potential. There are three different in vivo binding potentials (BPND, BPP, 
BPF). 

CBF  Cerebral blood flow. 

Compartment  A distinct region or state in which substances are distributed uniformly. 
The amount of substance transported out of a compartment is proportional to the 
amount in the region or state. 

Compartmental model  A mathematical description of the transport/reaction pathways of 
tracers in terms of interconnected compartments. 

Convolution  A mathematical time integration operation that gives the result of an input 
function f(t) combining with a system’s impulse response function g(t) to obtain its 
output. A traditional notation is f (t) ⊗ g(t ). The operation is f (τ ) ⋅ g(t − τ )dτ∫  

Cost function  Expression selected for optimization (minimization) when a model’s best 
set of parameters have been found - generally a weighed sum of residuals squared.  

Extraction fraction  Fraction of substrate or tracer extracted from blood to tissue during 
the first passage through the organ. 

FDG  Fluor-Deoxy-D-Glucose 

Fick principle  Technique for determining consumption of a substance by an organ. It  is 
calculated form the product of the arteriovenous concentration difference of the 
substance and blood flow.  

Gauss-Newton method  The most common algorithm used for nonlinear regression 
problems. 

Gjedde-Patlak Plot  A simple method for determining the rate uptake constant and 
volume of distribution of a tracer using a linearisation and linear regression. 

Half life  Time during which the amount of a substance decreases to half its original value. 

Input function  A time function providing excitation/changes to a system it acts upon; in 
this context the plasma concentration as a function of time. 

Least squares  A popular criteria used in the cost function: minimizing the sum of the 
squares of the residuals. 

Ligand  Any compound or drug (either agonist or antagonist) that binds to a receptor. 
                                                 
1 Phelps, M. E., J. C. Mazziotta, et al. (1986). Positron Emission Tomography and Autoradiography 
(Principles and Applications for the Brain and Heart). New York, Raven. 
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Mathematical model  The mathematical description of the behaviour of a system allowing 
calculation of predicted behaviour. 

Maximum likelihood  A technique for  parameter estimation that chooses those parameter 
values that cause the observed data to be the most likely outcome. 

MR = Metabolic rate  The uptake rate of a sustance at equilibrium. 

MRGLc  Metabolic rate of glucose (μmole/min/g). 

Parameter  A numerical quantity whose value affects the response of a model. In tracer 
kinetic models, the parameters usually are the rate constants of transfer between the 
model’s compartments. the meaning of these parameters is usually related to 
physiological or biochemical processes ( e.g., blood flow, PS product, etc.). 

Perfusion  Blood flow per mass of tissue in ml/min/g or ml/min/ml. 

PS  Permeability surface product of the permeability of a substance or tracer across a 
capillary wall and the capillary surface area per unit weight of tissue. It determines 
the rate at which a substance or tracer is transported from the vascular to tissue 
space. 

Rate constant (k)  Parameter describing a particular part of a process, namely a specific 
contribution to a component’s amount changing per unit time/amount present. 

ROI  Region of interest. 

SA  Specific activity. Radioactivity per unit mass (or volume). 

Steady state Net flux of tracer between the compartments under study is zero. The total 
amount leaving is identical to the total amount entering the system. 

Transient equilibrium With reference to neuroreceptor binding studies. The maximum 
turning point of the total tissue curve. At this point the rate of change of 
concentration in tissue is zero however the total loss from the system is not 
negligable (loss from non-specific binding). 

Tracer  A measurable substance used to mimic, follow, or trace a chemical compound or 
process without disturbing the process under study. 

Weighted least squares  A modified version of ordinary least squares estimation 
involving the determination of parameters by minimizing the weighted sum of 
squared deviations between the data and the model. 
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