How to establish a new radiotracer

- Target identified
 - Enough binding sites?
- Candidates
 - Suitable affinity, selectivity, lipophilicity?
 - Suitable chemical structure?
 - Agonist, antagonist properties?
- Test
 - autoradiography, animal PET
- Metabolism
 - No lipophilic metabolites, not too rapid
- Protein binding of compound
- Uptake in target regions
 - Can binding be specifically blocked
- Quantification issues
 - 1TC, 2TC, linear methods, reference tissue methods
- Mass dose issues

Why a 5-HT_{2A} receptor agonist PET tracer?

- Dopamine D₂ receptor agonist radiotracers are superior to antagonist radiotracers for measuring dopamine release (*Narendran et al. 2010, 2004; Cumming et al. 2002*).
- 5-HT_{2A} receptor antagonist PET tracers are generally not displaceable by elevated levels of 5-HT (*Pinborg et al. 2004, Paterson et al. 2010*).
- 5-HT_{2A} agonist PET tracers are hypothesised to be more prone to displacement by endogenous 5-HT.

Some Medicinal Chemistry 5-HT_{2A} Receptor Compounds

PET Methods: In pigs

- Seven Danish Landrace Pigs (Weight 17.3±0.76 kg) were used in this study
- Anaesthesia: i.v. propofol (1 ml/kg*hour)
- Venous access through the milk vein, [¹¹C]Cimbi-5 given by IV bolus injections (mean injected dose: 238 MBq, mean specific activity: 71 GBq/μmol, and mean injected mass: 2.15 μg)
- Monitoring blood pressure, heart rate, and temperature during the scans
- Catheter in the femoral artery: Input using an autosampler, blood and plasma sampling manually

Nine ¹¹C-labelled 5-HT_{2A} receptor agonists

Ettrup et al, Eur J Nucl Med Mol Imaging, 2011

[¹¹C]Cimbi-36 is sensitive to fenfluramine

Baseline

Fenfluramine

Finnema et al

Safety and Dosimetry of [¹¹C]Cimbi-36

Ettrup et al, Mol Imaging Biol, 2013

[¹¹C]Cimbi-36 Brain Scan - First Time in Humans

PET- and Cyclotron Unit, RH, 2012

First Clinical [¹¹C]Cimbi-36 TACs

First subject was rescanned with [¹¹C]Cimbi-36 one hour after the first scan w/o any intervention between the scans (test-retest TACs are shown).

5-HT_{2A}R stimulation: Drug levels and subjective effects

Madsen et al., Neuropsychopharmacol 2019

5-HT_{2A}R occupancy with [¹¹C]Cimbi-36 PET

Madsen et al., Neuropsychopharmacol 2019

5-HT₄-receptors

- Subgroup of serotonin receptors
- Located primarily in
 - caudate nucleus (32 pCi/mm²)
 - putamen (26 pCi/mm²)
 - hippocampus
 - CA1 (30 pCi/mm²)
 - Dentate gyrus (17 pCi/mm²)
 - cortical (12-20 pCi/mm²)
 - Cerebellum (<1 pCi/mm²)
- Clinical relevance:
 - Alzheimer's Disease
 - Enhance learning and memory
 - May diminish the deposition of pathological amyloid plaques

How do we quantitate the 5-HT₄ receptors?

• New PET tracer: ¹¹C-SB207145 from GlaxoSmithKline

-The **Gold Standard** for quantification is the use of a **compartment model** with arterial input with

metabolite correction

- •Only few assumptions
- •Invasive with arterial cannulation
- Noisy

Plasma Non-specific binding

-Simplified reference tissue model

- Based on assumptions
- Non-invasive
- Needs validation

binding

Set-up

- Nine healthy subjects 6 were rescanned the same day
- Arterial cannulation
- 40-50 manually drawn blood samples during the scan for radioactivity measurement
- 4-7 samples for metabolite measurements
- 2-hour scan in 18 ring GEadvance scanner
 - Reconstructed using filtered back projection
 - Automatic delineation of regions of interest (Svarer et al. Neuroimage 24 (2005): 969-79)
 - Partial volume correction (Müller-Gartner et al. J.Cereb.Blood Flow Metab (1992):571-83

Metabolite measurements

High Performance Liquid Chromatography separate metabolites from parent compound stops the metabolism immediately

Compound stability in blood

Marner et al, 2009 & 2010

Metabolite Curves

Time Activity Curves

Results: Marked lower variability with the Simplified Reference Tissue Model

	2- Tissue C Ma	ompartment odel	Simplified Reference Tissue Model			
Regions	Mean (SD)	Variability in test-retest	Mean (SD)	Variability in test-retest		
Left caudatus	5.19 (1.03)	0.24 (0.20)	3.24 (0.35)	0.06 (0.04)		
Right caudatus	5.22 (1.41)	0.32 (0.18)	3.25 (0.19)	0.04 (0.04)		
Left putamen	4.25 (0.83)	0.22 (0.19)	3.05 (0.33)	0.08 (0.08)		
Right putamen	4.51 (0.79)	0.14 (0.08)	3.14 (0.44)	0.05 (0.03)		
Left hippocampus	0.91 (0.24)	0.19 (0.21)	0.78 (0.15)	0.05 (0.04)		
Right hippocampus	0.88 (0.21)	0.29 (0.25)	0.77 (0.14)	0.17 (0.11)		
Left parietal cortex	0.95 (0.26)	0.28 (0.19)	0.93 (0.09)	0.07 (0.07)		
Right parietal cortex	0.95 (0.28)	0.26 (0.25)	0.92 (0.10)	0.07 (0.06)		

Results: Bias in high binding regions with the Simplified Reference Tissue Model

Scan length effects

Blocking of 5-HT₄ receptors

Tracer Dose – How Do We Know?

- An in vivo saturation study to directly estimate the tracer dose limit: Escalating doses of "cold" ligand in same individual or in a cohort
- Estimating tissue concentrations and relate to in vitro Kd or Bmax values

Occupancy – estimation of in vivo K_D

Marner et al, 2009

Mass doses

Parametric BP_{ND} images after injection of 4.9 μ g ligand (left), 21.9 μ g ligand (middle) and the corresponding MRI (right). BP_{ND} decreased by 14% as a result of mass dose.

					_				
	Mass Dose [µg]		Occupancy plots			Mass dose limits [µg]			
	D_{Low}	$\mathrm{D}_{\mathrm{High}}$	α	R^2		ID ₅₀	D_5	D_{10}	
Subject 1	4.9	21.9	0.85	0.99		94.3	5.0	10.5	
Subject 2	4.2	17.0	0.80	0.97		50.2	2.6	5.6	
Subject 3	3.7	15.6	0.91	0.99		110.7	5.8	12.3	
Subject 4	0.3	4.4	0.93	0.99		53.6	2.8	6.0	
Subject 5	0.7	4.1	0.95	1.00		66.9	3.5	7.4	
Subject 6	2.4	4.3	0.98	0.99		93.7	4.9	10.4	
Subject 7	2.7	4.2	0.99	0.99		131.1	6.9	14.6	
$Mean \pm SD$	2.7 ± 1.7	10.2 ± 7.7	0.92 ± 0.07			85.8 ± 30.2	4.5 ± 1.6	9.5 ± 3.3	

5-HT challenge with Citalopram infusion

Marner et al, 2010

SSRI 3-Weeks Intervention Study

Haahr et al, Mol Psych 2014

- Evaluate effects of 3-week SSRI administration on underlying brain function and brain chemistry
 - Hypothesis 1: SSRI administration will result in a significant decrease in 5-HT4R binding in the SSRI intervention group, but not in the placebo group (*Pharmacological challenge effect*)

The 5-HT4 receptor binding decreases after 3 weeks of fluoxetine intervention

Conclusions

- ¹¹C-SB207145 has a high target-to-background signal also in low binding regions
- The regional distribution of ¹¹C-SB207145 corresponds to 5-HT₄ receptor density
- The tracer is sufficiently reversible to allow for quantification, also in high binding regions – but long scan length (120 min) is required
- The Simplified Reference Tissue Model (without arterial cannulation and metabolite measurements) can be used for estimation of binding potentials. Test-retest variability is between 6 and 10%. However, a bias of 27-36% must be expected in high binding regions
- Cerebellum is valid as a reference region (complete blocking)
- Injected mass of SB207145 should be kept <5ug to ensure <5% receptor occupancy
- The tracer is susceptible to chronic, but not acute changes in the endogenous neurotransmitter

Quantification Methods

- Bolus injection with kinetic modelling
 - with arterial input function
 - with vascular voxel input function
 - with reference tissue input function
 - with standardized input function.
 - other (venous, heart, carotid)
- Bolus-infusion method
 - with venous blood samples
 - with reference tissue

Ways to determine V_{ND}

- labeled non-specific stereoisomer of the ligand
- tissue reference region
- complete receptor blockade
- brain:blood partition coefficient, $\boldsymbol{\rho}$
- from the V_T occupancy plot

5-HT_{2A} Receptor Blockade with Ketanserin

 $Occupancy = (BP_{P (unblocked)} - BP_{P (blocked)}) / BP_{P (unblocked)}$ $= 1 - (BP_{P (blocked)} / BP_{P (unblocked)})$

¹⁸F-altanserin PET, Pinborg et al (2004)

Occupancy

Unblocked
$$V_T |_{C_F^L = 0} = V_S + V_{ND}$$

Blocked
$$V_T \Big|_{C_F^L} = V_S (1 - O) + V_{ND}$$

Lassen JCBFM 1992

V_T Occupancy Plot

5-HT_{2A} Receptor Quetiapine Occupancy

Rasmussen et al, Psychopharm, 2010

