

Some MR contrast agents

UNIVERSITY OF COPENHAGEN

Exogenous CA	- Gd chelates - Mn chelates - Hyperpolarized gases - Iron oxide
Endogenous	{ - Water protons
CA	- Deoxyhemoglobin (BOLD effect)

RIGSHOSPITALET

UNIVERSITY OF COPENHAGEN

Some MR perfusion metods

Dynamic susceptibility contrast (DSC) CA: Gadolinium MR Imaging: T2*w

Arterial spin labelling (ASL) CA: Water MR Imaging : 'T1w'

Dynamic contrast enhanced (DCE) CA: Gadolinium MR Imaging : T1w

UNIVERSITY OF COPENHAGEN **Contrast injection**

RIGSHOSPITALET

Paramagnetic Contrast, Gd chelates

UNIVERSITY OF COPENHAGEN

Standard DSC Perfusion Protocol

UNIVERSITY OF COPENHAGEN

- Intravenous injection of Gd contrast agent
- Dose: 1-2 mmol/kg body weight
- Bolus injection: 3 5 ml/s
- Rapid imaging using GE-EPI (time resolution = 1-2 seconds)
- Voxel size ~ 2 mm x 2 mm, ~ 4 mm thick slices, 15 30 slices
- Total imaging time required: ~ 2 minutes

RIGSHOSPITALET

RIGSHOSPITALET

UNIVERSITY OF COPENHAGEN

DSC time-series

E. Rostrup

RIGSHOSPITALET

Conversion of signal units to relaxation rate units

$S(t) = S_0 \exp[-TE \cdot R_2^*(t)]$

UNIVERSITY OF COPENHAGEN

 $S(baseline) = S_0 exp[-TE \cdot R_2^*(baseline)]$

 $S(t)/S(baseline) = exp[-TE \cdot \{R_2^*(t) - R_2^*(baseline)\}]$

 $\Delta R_{2}^{*}(t) = R_{2}^{*}(t) - R_{2}^{*}(baseline)$

$\Delta R_2^*(t) = -\ln[S(t)/S(baseline)]/TE$

UNIVERSITY OF COPENHAGEN The tissue response

RIGSHOSPITALET

RIGSHOSPITALET

Model-free deconvolution

UNIVERSITY OF COPENHAGEN

$$c_{t}(t) = CBF \cdot \int c_{a}(t') r(t-t') dt'$$

Can be written as a matrix equation

$$C_{+} = \mathbf{A} \cdot \mathbf{R}$$

RIGSHOSPITALET

There are numerical methods to solve by inverting A

$$\mathsf{R} = \mathsf{A}^{-1} \cdot \mathsf{C}_{\dagger}$$

e.g. Singular Value Decomposition (SVD) or Tikhonov regularization

UNIVERSITY OF COPENHAGEN Dynamic susceptibility contrast (DSC) perfusion

Background:

- MR perfusion methods
- DSC perfusion physics
- DSC perfusion methodology
- Applications:
- Stroke
- 5110KC

Brain tumors

- Caveats:
- Leakage
- Quantification

RIGSHOSPITALET

RIGSHOSPITALET

UNIVERSITY OF COPENHAGEN

Influence of leakage correction on tumor grading

Distortions of dynamic images

UNIVERSITY OF COPENHAGEN

• EPI images usually employed for bolus tracking are prone to distortions

Technical Note Correction of BO-Distortions in Echo-Planar-Imaging–Based Perfusion-Weighted MRI

Integrang "Jacobie Control of Christopher Larsson,"² onas Varda!, ^{1,3,4} Raimo A. Salo, MS,¹ Christopher Larsson,^{1,2} and Mark M. Dale, ^{10,5,4,7} Dominic Holland, PhD,^{1,6} Ingo Raamus Groote, PhD,⁸ nd Atle By-merud, PhD,^{1,4}

uncorrected reference corrected

RIGSHOSPITALET

UNIVERSITY OF COPENHAGEN Determination of arterial input function

Example of automated AIF

Simulation of field distribution around vessel with Gd

• The AIF is difficult to determine due to the low quality of EPI images

 An AIF outside a large vessel is often preferable

 Many methods in the literature for automated AIF determination

Murase, JMRI (2001) Duhamel, MRM (2006) Bjørnerud, JCBFM (2010)

Dynamic susceptibility contrast (DSC) perfusion

UNIVERSITY OF COPENHAGEN

- MR method for measuring brain perfusion
- Dynamic imaging during Gd bolus injection
- CBF, CBV, MTT can be quantified using model-free deconvolution
- Applications in acute stroke and neuro-oncology
- Beware of methodological issues!

