

Basic Kinetic Modeling in PET and MR Imaging March 4-8, 2024

Teachers

- (GMK) Gitte Moos Knudsen, professor, DMSc, Neurobiology Research Unit, Rigshospitalet (course director)
- (HL) Henrik B.W. Larsson, professor, DMSc, Functional and Diagnostic MR Unit, Rigshospitalet (course Director)
- (SC) Stig Præstekjær Cramer, MD, PhD, Functional Imaging Unit, Rigshopitalet Glostrup
- (AEH) Adam Espe Hansen, Professor, MSc, PhD, Dept Diagnostic Radiology, Rigshospitalet
- (AJ) Annette Johansen, MD, PhD, Neurobiology Research Unit, Rigshospitalet
- (IL) Ian Law, Professor, DMSc, Dept. Clinical Physiology, Rigshospitalet
- (UL) Ulrich Lindberg, MSc, PhD, Functional Imaging Unit, Rigshospitalet Glostrup
- (CM) Clara Madsen, PhD student, Neurobiology Research Unit, Rigshospitalet
- (LM) Lisbeth Marner, DMSc, Dept. Clinical Physiology/Nuclear Medicine, Bispebjerg Hospital
- (IR) Ilan Rabiner, BSc Hons, MBBCh, FCPsych SA, Invicro, Hammersmith Hospital, UK
- (PS) Pontus Plavén-Sigray, PhD, Neurobiology Research Unit, Rigshospitalet
- (MS) Martin Schain, MSc, PhD, Antaros Medical
- (CS) Claus Svarer, PhD, Neurobiology Research Unit, Rigshospitalet
- (MV) Mark Vestergaard, MSc, PhD, Functional Imaging Unit, Rigshospitalet Glostrup

Location

Neurobiology Research Unit, Rigshospitalet, entrance 7-8, Inge Lehmanns Vej 6-8, DK-2100 Copenhagen Ø All days except Wednesday: Ground floor, room 12.00.8523 (located between entrance 7 and 8) Wednesday: NRU conference room, entrance 8, 5th floor

Monday, March 4, 2024

09.00-9.30	Introduction (GMK, CS, HL)
	Presentation of the individual participants. Please prepare a short presentation of yourself and
	the relation of tracer kinetics to your project.
9.30-10.00	Basic mathematics, exponentials, compartment modelling and differential equations (CS)
10.00-10.30	Basic physiology, blood, tissue and Blood Brain Barrier (GMK)
10.30-11.00	Coffee break
11.00-12.30	Basic tracer kinetic concepts: Steady state, linearity, stationarity etc. (MV)
12.30-13.30	Lunch
13.30-14.30	Clearance and Fick's principle, including examples (SC)
14.30-15.30	PC exercise 1 (intro, basics) (CS, GMK, PS, AJ)
15.30-16.30	Extraction, Renkin-Crone model, examples of determination of permeability (SC)

Tuesday, March 5, 2024

09.00-10.00 10.00-11.00 11.00-12.00	Bolus injection (HL) Impulse response, convolution (HL) Mean transit time, external residue detection (HL)
12.00-13.00	Lunch
13.00-14.00 14.00-15.00 15.00-16.00	System theory (HL) PC exercise 2 (convolution, extraction) (CS, GMK, PS, AJ) Kety-Schmidt – Examples (HL)

Wednesday, March 6, 2024

09.00-09.45	Introduction to positron emission tomography (PET) and single photon emission tomography (SPECT) (MS)
09.45-10.30	PET and SPECT kinetics (MS)
10.30-10.45	Coffee break
10.45-12.00	Receptor kinetics (MS)
12.00-13.00	Lunch
13.00-14.00	Applications of PET in drug development (IR)
14.00-15.00	Determination of glucose consumption, deoxyglucose method (PS)
15.00-16.00	PC exercise 3 (models and rate constants) (CS, MS, LM, PS, AJ)

Visit to the PET department in order to see the local setup for, e.g., blood sampling, PET, and new combined PET/MR scanner.

Thursday, March 7, 2024

09.00-10.00 10.00-11.00 11.00-12.00	Testing new radioligands and pharmacology development (GMK) Reference tissue modeling (CS, LM) PC exercise 4 (linearization and reference tissue modeling) (CS, PS, GMK, LM, AJ)
12.00-13.00	Lunch
13:00-14:00 14:00-15:00	Introduction to magnetic resonance imaging (MRI) (AEH) Measurements of heart perfusion using dynamic contrast enhancement and T1 weighted MRI (UL)
15.00-16.00 16.00-17.00	Measuring brain perfusion with Dynamic Susceptibility Contrast MRI (AEH) PC exercises (MR) (AEH, UL, CS)

Friday, March 8, 2024

	,
09.00-09.45	Perfusion measurements in brain using [15O]-H ₂ O PET techniques and clinical applications (IL)
09.45-10.30	Measurements of tissue perfusion using $[^{15}O]$ - H_2O PET - kinetic models of heart, kidney and liver. (LM)
10.30-10.45	Coffee break
10:45-11:30 11.30-12.15 12.15-12.45	Blood flow measurements using MR Arterial Spin Labelling (UL) Small animal imaging (CM) PC exercise 5 (guess a model and wrap-up) (CS, GMK, LM, AJ)
12.45-13.15	Lunch
13.15-14.00	Example of analysis and kinetic modeling of a dynamic brain PET dataset using standard software like PVElab and PMOD (CS)
14.00-14.30	Discussion of the course participants own projects - bring material from your own project that you want to share and discuss (GMK, CS, HL)
14.30-15.00	Plenum discussion of course material (HL, CS, GMK)