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Abstract

Positron Emission Tomography (PET) is a state-of-the-art imaging technique for
measuring the spatial distribution of neurotransmitters and receptors in the living
human brain. However, the PET signal is influenced by complex spatio-temporal
noise patterns arising from sources of radioactive decay, head motion and scanner-
specific limitations. A large set of preprocessing algorithms have been developed
to remove various sources of noise, but there is currently a limited consensus in
the literature on the most optimal preprocessing strategy. Furthermore, it is not
well understood how the choice of preprocessing strategy may affect the variabil-
ity of the data and ultimately the conclusions of a study. This thesis develops
a framework for the evaluation of preprocessing performance in PET using the
radioligand [11C]DASB, targeting the serotonin transporter, as exemplary case.
In the five included research papers, I evaluate current preprocessing strategies in
the literature, how they affect measures of test-retest bias, variability and false-
positive rates, and how they may lead to different conclusions in a double blind,
randomized, placebo-controlled study. Finally, I provide a statistical framework
for adequately controlling the false-positive rate when dealing with large sets of
preprocessing options.
In this work, I show that (1) variations in choice of preprocessing strategy are
an overlooked aspect in modern PET neuroscience, (2) measures of bias, within-
and between-subject variability are significantly affected by preprocessing strat-
egy, and significant differences between test and retest were obtainable despite
correcting for multiple comparisons and (3) different preprocessing strategies lead
to different neurobiological conclusions. My findings suggest that the preprocess-
ing stage contributes with considerable variance into the data, with the prepro-
cessing steps motion correction, partial volume correction and kinetic modeling
contributing the most. I show that knowledge about the variability of preprocess-
ing is critical to limiting false-positive rates. This underlines the importance of
selecting preprocessing strategy with great caution. Finally, I present my view on
future directions and best practices for handling preprocessing variability across
PET centres.



ii



Resume in Danish

Positron Emissions Tomografi (PET) er en medicinsk billeddannende teknik til at
måle biokemiske og farmakologiske processer i den levende menneskehjerne. Der
er imidlertid stigende bekymring over, hvor vanskeligt det har været at replikere
denne type forskning, og meget tyder på, at støjkilder fra optagelsen af PET data,
samt valget af hvorledes data forbehandles (præ-processeringen) har afgørende
betydning for det endelige resultat. En lang række præ-processerings strategier
er gennem årene blevet udviklet til at fjerne støjkilder, men der er uenighed
omkring valget af den mest optimale strategi. Derudover fremgår det ikke klart,
hvorledes valget af præ-processering påvirker variabiliteten i data, og dermed
hvilke konklusioner, der kan drages. I denne afhandling udvikler jeg en strategi,
hvormed man baserer sine valg af præprocesserings-trin på kvantitative mål, ved
anvendelse af data optaget med radioliganden [11C]DASB. I de fem inkluderede
artikler viser jeg først, hvor meget valget af præ-processering varierer i literaturen.
Dernæst viser jeg, hvorledes valget af præ-processering påvirker variabiliteten og
falsk-positiv raten i et test-retest datasæt, samt hvordan det påvirker konklu-
sionerne i et randomiseret, placebo-kontrolleret studie. Afslutningsvist, udvikler
jeg et statistisk redskab til at kontrollere for falsk-positiv raten, når der eksis-
terer mange muligheder for valg af præ-processerings strategier. Mine resultater
viser, (1) der er stor variation i literaturen omkring valg af præ-processering (2)
statistiske mål som bias, variabilitet (i samme person og i mellem personer),
samt falsk-positiv raten påvirkes betydeligt af præ-processering, og (3) forskel-
lige valg af præ-processering resulterer i forskellige konklusioner. Mine resultater
demonstrerer, at præ-processering bidrager med betydelig variabilitet i data,
hvor præ-processerings valg: bevægelses-korrektion, partial volume korrektion
og kinetisk modellering, er de komponenter, der bidrager mest. Jeg demonstrerer
også, at viden om variabiliteten af præ-processering er kritisk for a mindske falsk-
positiv raten. Dette understreger vigtigheden af, at valg af præ-processering skal
baseres på grundig analyse og tilpasses det biologiske spørgsmål. Afslutningsvist
bidrager jeg med mit syn på fremtidig forskning, samt bedste fremgangsmåder
til at håndtere præ-processering på tværs af PET centre.



iv





vi



Papers included in the
thesis

Publications

[A] Nørgaard M, Ganz M, Svarer C, Feng L, Ichise M, Lanzenberger R,
Lubberink M, Parsey RV, Politis M, Rabiner EA, Slifstein M, Sossi V,
Suhara T, Talbot PS, Turkheimer F, Strother SC, Knudsen GM. Cerebral
Serotonin Transporter Measurements with [11C]DASB: A Review on Ac-
quisition and Preprocessing across 21 PET Centres. Journal of Cerebral
Blood Flow and Metabolism, 2019 Feb;39(2):210-222.
DOI: 10.1177/0271678X18770107.

[B] Nørgaard M, Ganz M, Svarer C, Frokjaer VG, Greve DN, Strother SC,
Knudsen GM. Optimization of Preprocessing Strategies in Positron Emis-
sion Tomography (PET) Neuroimaging: A [11C]DASB Study. In revision,
NeuroImage, Nov 2018.

[C] Nørgaard M, Greve DN, Svarer C, Strother SC, Knudsen GM, Ganz M.
The Impact of Preprocessing Pipeline Choice in Univariate and Multivari-
ate Analyses of PET Data. Pattern Recognition in Neuroimaging (PRNI),
IEEE Explore, 2018, pp. 1-4. DOI: 10.1109/PRNI.2018.8423962

[D] Nørgaard M, Ganz M, Svarer C, Greve DN, Frokjaer VG, Strother SC,
Knudsen GM. The Impact of Different Preprocessing Strategies in PET
Neuroimaging: A [11C]DASB-PET Case. Submitted to Journal of Cere-
bral Blood Flow and Metabolism, Jan 2019.



viii Papers included in the thesis

[E] Nørgaard M, Ozenne B, Svarer C, Frokjaer VG, Ganz M. Preprocessing,
Prediction and Significance: Framework and Application to Brain Imag-
ing. Submitted to Medical Image Computing and Computer Assisted
Intervention (MICCAI), Jan 2019.

Other Relevant Publications

1 Nørgaard M, Ganz M, Svarer C, Beliveau V, Fisher PM, Mc Mahon
B, Greve DN, Strother SC, Knudsen GM. Estimation of Regional Sea-
sonal Variations in SERT-levels using the FreeSurfer PET pipeline: a re-
producibility study. Proc. of the MICCAI workshop on Computational
Methods for Molecular Imaging, 2015. In press.

2 Rasmussen JH, Nørgaard M, Hansen AE, Vogelius IR, Aznar MC, Jo-
hannesen HH, Costa J, Kjær A, Specht L, Fischer BM. Feasibility of
multiparametric imaging with PET/MR in head and neck squamos cell
carcinoma. Journal of Nuclear Medicine, 2017: 58(1): pp. 69-74. DOI:
10.2967/jnumed.116.180091

3 Deen M, Hansen HD, Hougaard A, da Cunha-Bang S, Nørgaard M,
Svarer C, Keller SH, Thomsen C, Ashina M, Knudsen GM. Low 5-HT1B
receptor binding in the migraine brain: A PET study. Cephalalgia. 2018
Mar;38(3):519-527. DOI: 10.1177/0333102417698708

4 Nørgaard M, Ganz M, Svarer C, Fisher PM, Churchill NW, Beliveau
V, Grady C, Strother SC, Knudsen GM. Brain Networks Implicated in
Seasonal Affective Disorder: A Neuroimaging PET Study of the Sero-
tonin Transporter. Frontiers in Neuroscience | Brain Imaging Methods,
November 2017. DOI: 10.3389/fnins.2017.00614

5 Deen M, Hansen HD, Hougaard A, Nørgaard M, Eiberg H, Lehel S,
Ashina M, Knudsen GM. High brain serotonin levels in migraine between
attacks: A 5-HT4 receptor binding PET study. Neuroimage: Clinical 18
(2018); 97-102.

6 Mc Mahon B, Nørgaard M, Svarer C, Andersen SB, Madsen MK, Baare
W, Madsen J, Frokjaer VG, Knudsen GM. Seasonality-resilient individuals



ix

downregulate their cerebral 5-HT transporter binding in winter - A lon-
gitudinal combined 11C-DASB and 11C-SB207145 PET study. European
Neuropsychopharmacology, 2018, Oct;28(10):1151-1160.



x



Acknowledgements

First of all, I would like to give a sincere thank you to my supervisor and mentor,
Professor Gitte Moos Knudsen. Thank you, Gitte, for taking me under your wings
and for giving me the opportunity to be a part of a fantastic research group. Your
innate dedication to science, your close to infinite knowledge of neuroscience, and
your always positive attitude and leadership are a true inspiration. Finally, thank
you for all our discussions on all aspects of science, and for always believing in me
and pushing me to become a better researcher. I would also like to thank my other
supervisors, Asst. Prof. Melanie Ganz, Senior scientist Claus Svarer, and Prof.
Stephen C. Strother. Thank you, Melanie, for your ability to always motivate
and inspire researchers around you, for your engagement in this project, and for
always wanting the best for me. Thank you, Claus, for letting me benefit from
your solid experience and knowledge, for all your stories, and for always taking
the time to discuss topics with me ranging from preprocessing and statistics,
to international history and weather phenomena’s. Thank you, Stephen, for
sharing your in exhaustive knowledge on preprocessing and statistics, and for
always taking good care of me. Especially, thank you for showing me to balance
between science and enjoying life (travelling, food, wine), and for showing me
that this balance is important for doing exemplary science. I would also like
to thank Asst. Prof. Douglas Greve and the Martinos Center for Biomedical
Imaging at MGH/Harvard/MIT in Boston for kindly hosting me during a five-
month stay. Thank you, Doug, for all our discussions on preprocessing, coding
and mathematical derivations, and for teaching me to always be critical.

I would also like to thank everyone at the Neurobiology Research Unit (NRU) at
Rigshospitalet. Special thanks to Hanne Demant for being absolutely awesome,
and for all our conversations, runs, and good times over the years. Thank you to
my office mates, Sebastian Holst, Ling Feng, Vincent Beliveau and Giske Opheim,
for all your positive energy, all the laughs, and for being absolutely amazing at ev-
ery Christmas party. Thank you to the remaining part of the data analysis team,
Patrick Fisher, Brice Ozenne, and Martin Schain for all your constructive feed-
back and for a lot of good discussions over the years. Thank you to my workout
buddy, colleague and friend Martin Korsbak, for many good times and jokes, and
for doing really cool research. Thank you to Marie Deen for all our discussions
on migraine and preprocessing, and for being excellent company in Boston. A
sincere thank you to both Dorthe Givard and Peter S. Jensen for always helping
me out on practical matters and for extracting data from the CIMBI database.



xii Nomenclatures

Thank you to Vibe G. Frøkjær for letting me use her high quality data, and for
being subject to a full investigation of her data with respect to preprocessing
and statistical analysis. Also thank you to Marie Deen and Brenda Mc Mahon
for including me in their research on migraine and Seasonal Affective Disorder,
respectively, and for always creating a great atmosphere, whether it being at a
party or at NRU. Thank you to all the remaining people at NRU for creating a
pleasant and fun research environment, for all the laughs, and last but not least,
for all the cake!

Finally, I would like to express my sincerest thanks to my family (Keld, Lene,
Anne, Jeremy, Nadine, Anna Marie) and to the love of my life, Kathrine Kiels-
gaard, for your love and support and for understanding my high commitment to
this project.

Martin Nørgaard, Copenhagen, January 29th 2019



Nomenclatures

Abbreviations
AAL Automated Anatomical Atlas

AD Alzheimers Disease

ACC Anterior Cingulate Cortex

Acc Accuracy

AIR Automated Image Registration

ANCOVA Analysis of covariance

ANOVA Analysis of variance

AVG Average

BBR Boundary Based Registration

BDNF Brain-derived neurotrophic factor

BGO Bismuth germanate detector

Bq Becquerel

BPND Non-displaceable binding potential

BSV Between-Subject Variability

CNR Contrast-to-Noise-Ratio

CI Confidence Interval

CSF Cerebrospinal Fluid

CV Coefficient of Variation

DASB 3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile



xiv Nomenclatures

FBP Filtered Back Projection

FC Frontal Cortex

FDG 18F-FluoroDeoxyGlucose [MBq]

FDR False Discovery Rate

FIX Optimal Fixed Pipeline

fMRI Functional Magnetic Resonance Imaging

FOV Field-Of-View [cm2]

FPR False-Positive Rate

FS FreeSurfer

FWHM Full-Width-Half-Maximum

GE General Electric

GLM General Linear Model

GnRH Gonadotropin Releasing Hormone

gSNR Global Signal-To-Noise Ratio

GSO Gadolinium oxyorthosilicate detector

GTM Geometric Transfer Matrix

HRRT High Resolution Research Tomograph

ICC Intraclass Correlation Coefficient

KS Kolmogorov-Smirnov

LDA Linear Discriminant Analysis

LOR Line-Of-Response

LSO Cerium-doped lutetium oxyorthosilicate detector

LYSO Lutetium-yttrium oxyorthosilicate detector

MDD Major Depressive Disorder

MNI Montreal Neurological Institute

MP-RAGE Magnetization-Prepared Rapid Gradient-Echo

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

MRTM Multilinear Reference Tissue Model

MRTM2 Multilinear Reference Tissue Model 2

NaI(TI) Thallium-doped sodium iodide detector

NEC Noise Effective Counts

nMC without Motion Correction



Nomenclatures xv

noPVC without Partial Volume Correction

OSEM Ordered Subset Expectation Maximization

PET Positron Emission Tomography

PSF Point Spread Function

PVC Partial Volume Correction

PVE Partial Volume Effect

RTM Reference Tissue Model

SAD Seasonal Affective Disorder

SNR Signal-to-Noise Ratio

SPM Statistical Parametric Map

SRTM Simplified Reference Tissue Model

SSRI Selective Serotonin Reuptake Inhibitor

SUV Standardized Uptake Value [Bqkg ]

TAC Time Activity Curve

TF Tissue Fraction

TWA Time Weighted Average

VOI Volume Of Interest [cm3]

WM White Matter

WSV Within-Subject Variability

5-HT Endogenous Serotonin

5-HTT Serotonin Transporter

5-HTTLPR Serotonin-transporter-linked polymorphic region

Symbols
X Design matrix
�Xtrain Training data mean from class Ck
Ltrain Linear transformation matrix normalized to unit variance Ck
Ck Class assignment k

y Column vector of [11C]DASB uptake values

yn Class labels 2 f�1; 1g
g Column vector of class labels

� Row vector with true underlying uptake values

�̂ Estimate of the VOI means



xvi Nomenclatures

k2 Tracer clearance rate in target tissue [min�1]

k
0

2 Tracer clearance rate in reference tissue [min�1]

C(T ) Tissue tracer concentration in target region at time T [kBq/mL]

C
0
(T ) Tissue tracer concentration in reference region at time T [kBq/mL]

V Total distribution volume in target region [mL/mL]

V
0

Total distribution volume in reference region [mL/mL]

t Time [s]

b Intercept term


 Convolution

R1 Tracer delivery of relative influx of tracer to target

BPND Non-Displaceable Binding Potential

DVR Distribution Volume Ratio

S Number of sub-samples

~n Number of subjects drawn from statistical subsampling

n̂ Estimate of number of needed subjects

J Number of preprocessing pipelines

K Number of regions

N Number of samples

M Number of repeats cross-validation

d Difference in binding between test and retest

� Group average of binding

� Group standard deviation of binding

E Effective change in binding (sample size)

R Pearson’s correlation

Z Number of permutations

� Heaviside step function

P̂max Cumulative distribution of max accuracies

� Set of all permutations

� Permutation sample from a uniform distribution

p Number of features

�t Timing window in PET imaging [ms]



Nomenclatures xvii



xviii Table of Contents



Contents

Abstract i

Resume in Danish iii

Preface v

Papers included in the thesis vii

Acknowledgements xi

Nomenclatures xiii

1 Introduction 1

2 Motivation and Background 5
2.1 Positron Emission Tomography . . . . . . . . . . . . . . . . . . . 5

2.1.1 Principles of PET . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Measuring Radioligand Binding with Dynamic PET . . . 8

2.2 The Data-Analysis Chain in Dynamic PET . . . . . . . . . . . . 9
2.2.1 Subject Selection . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Optimization of Preprocessing Strategies . . . . . . . . . . . . . . 17
2.3.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . 18

2.4 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Methods - The Data-Analysis Chain 21
3.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



xx CONTENTS

3.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Performance Metrics of Reproducibility . . . . . . . . . . 27
3.4.2 Statistical Analysis Models . . . . . . . . . . . . . . . . . 29

4 Study 1: Preprocessing Strategies in the PET Literature 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 The Data-Analysis Chain . . . . . . . . . . . . . . . . . . 32
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Subject Selection . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Study 2: Evaluation and Optimization of Preprocessing 39
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 The Data-Analysis Chain . . . . . . . . . . . . . . . . . . 40
5.2.2 Preprocessing Optimization Across Subjects and Regions 41
5.2.3 Region-Specific Preprocessing Optimization . . . . . . . . 41

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.1 Test-retest Bias . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.2 Within- and Between-Subject Variability . . . . . . . . . 43
5.3.3 Preprocessing Optimization Across Subjects and Regions 44
5.3.4 Region-Specific Preprocessing Optimization . . . . . . . . 45
5.3.5 False-Positive Analysis . . . . . . . . . . . . . . . . . . . . 46

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Study 3: Different Preprocessing Choices Lead to Different
Conclusions 51
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.1 The Data-Analysis Chain . . . . . . . . . . . . . . . . . . 52
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3.1 Depressive Symptoms and Preprocessing . . . . . . . . . . 53
6.3.2 Neuroticism and Preprocessing . . . . . . . . . . . . . . . 54

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Study 4: Predictive Framework to Correct for Multiple Pre-
processing Options 59
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



CONTENTS xxi

7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2.1 Defining a Subset of Preprocessing Strategies . . . . . . . 62
7.2.2 Model Selection and Cross-validation . . . . . . . . . . . . 62
7.2.3 Permutation Test for a Single Strategy . . . . . . . . . . . 62
7.2.4 Permutation Test for Multiple Strategies . . . . . . . . . . 63

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Conclusions and Future Work 67
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.2.1 Voxelwise and Surface-Based Preprocessing . . . . . . . . 68
8.2.2 False-Positive Rates in PET . . . . . . . . . . . . . . . . . 69
8.2.3 Data Sharing . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography 71

A Paper [A] 91

B Paper [B] 105

C Paper [C] 147

D Paper [D] 153

E Paper [E] 173

F Declarations of Co-Authorship 183



xxii CONTENTS



Chapter 1

Introduction

Positron Emission Tomography (PET) is a state-of-the-art neuroimaging tech-
nique for imaging receptor systems (e.g. dopamine or serotonin) in vivo.
PET provides 4D imaging of the entire brain with relatively good spatial/tem-
poral resolution (millimeters/seconds), and with high sensitivity/specificity for
molecular targets (pico molar concentrations). It is a unique tool in neuroscience
for studying drug effects in the living human brain, but also expands to a broader
range of clinical applications such as the detection of cancerous tissue [Boel-
laard et al., 2015, Fischer et al., 2009], evaluation of myocardial perfusion and
metabolism [Kero et al., 2017, Danad et al., 2014], and for quantifying the pro-
gression of Alzheimer’s Disease (AD) [Zwan et al., 2017, Cohen and Klunk, 2014].

Serotonin is a neurotransmitter critical to homoeostasis, and its regula-
tion and timing are important determinants of health [Azmitia, 1999]. Insuffi-
cient regulation of serotonin has been associated with a range of brain disorders
including depression, anxiety disorders, sleep disturbance, attention deficit dis-
order, schizophrenia and AD, all together constituting the largest socioeconomic
burden in Western societies [Wittchen et al., 2011]. Although our understanding
of the serotonin system has advanced in recent years, several findings have been
contradictory, characterized by an inability to produce, and reproduce, reliable
biomarkers of disease risk and treatment responsiveness. This may, in part, stem
from an incomplete understanding of the sources of variation in the acquired
data. However, while most published receptor studies using PET mainly have
focused on extracting neuroscientifically relevant results, only a limited number
of studies have investigated the extent to which these findings may be influenced
by different sets of preprocessing steps (’preprocessing pipeline/stage’) applied
when analyzing the data. A preprocessing pipeline in neuroimaging commonly
refers to a set of steps used to denoise and remove artifacts in the data for subse-
quent statistical analysis (e.g. motion correction and outlier detection), thereby
improving the overall quality of the data. PET centres or even individual scien-
tists often design their own unique preprocessing strategy, and as a result, there is
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currently no consensus in the PET community on the most optimal preprocessing
strategy. This is further complicated by the fact that preprocessing is not carried
out in isolation, but rather depends on several other stages in a PET workflow
(the "Data-Analysis Chain", Figure 1.1) with various parameter choices, each of
which may interact with preprocessing to influence the signal and noise. These
stages include subject heterogeneity (Step 1), PET data acquisition (Step 2), and
choice of statistical analysis model (Step 4).

Figure 1.1: Workflow in a common PET experiment. The workflow consists
of 4 major stages: 1) subject selection, 2) data acquisition, 3) preprocessing,
4) statistical analysis. Choices at each stage may significantly affect the signal
and noise, but may also interact to influence the results.

Differences in receptor-occupancy as measured by PET are characterized by rel-
atively weak and non-stationary signal changes, typically ranging between 5-20%
following pharmarcological intervention (e.g. [Jørgensen et al., 2018]), and with
complex sources of structured noise. The principal noise components in PET
are typically subject-dependent, including head motion effects and physiological
processes, such as respiration and cardiac pulsation [Reyes et al., 2007, Lamare
et al., 2007]. Studies suggest, that motion artefacts are present in 10-20% of
high-resolution PET data [Ooi et al., 2009]. Furthermore, accompanying noise
confounds are additionally amplified during long acquisition scans [van der Kouwe
et al., 2006, Kober et al., 2012], especially in cases where patients suffer from med-
ical conditions preventing them from staying still in the scanner [Aksoy et al.,
2011, Andrews-Shigaki et al., 2011, Forman et al., 2011]. The signal changes
caused by such confounds are highly variable between subjects, and the integra-
tion of complex temporal and spatial signals making up these data, challenges a
reliable interpretation in studies with low sample sizes [Button et al., 2013]. To
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reduce subject-specific artefacts, a broad range of preprocessing algorithms have
been developed, ranging from de-noising (e.g. spatial smoothing) to artefact-
specific correction (e.g. partial volume correction or motion correction). It is
commonly assumed in PET that there exists a single preprocessing strategy that
can be adapted to all subjects to produce optimal results. However, it has not
been well explored how individual subjects or groups of subjects are heteroge-
neous in their optimal preprocessing strategy. In addition, there is evidence sup-
porting the notion that preprocessing demands (e.g. motion correction) vary as
a function of other stages in a PET experiment, such as data acquisition [Boel-
laard et al., 2001] and statistical analysis [Fisher et al., 2017], although these
issues need further validation.

Taken together, there is a need for a quantitative framework for evaluating and
comparing the performance of preprocessing strategies in PET, and a need to
test potential preprocessing interactions with subject variability and choice of
statistical analysis. In the following section (Chapter 2) I will provide the foun-
dation of this thesis, namely the motivation and background. This includes the
principles behind PET, including the extension to dynamic PET and measure-
ment of radioligand binding. Then, I will review the stages in the Data-Analysis
Chain of a typical dynamic PET experiment, ranging from subject selection to
the final results, and review how they relate to preprocessing. This is preceded by
a discussion on strategies for preprocessing optimization. Finally, I will explicitly
state the research objectives of this thesis in detail.

Thesis overview: The thesis includes a background and motivation part (Chap-
ter 2). The background chapter introduces the reader to the main topics and lim-
itations of a PET experiment, and strategies for optimization and validation of
preprocessing pipelines. Chapter 2 is rounded off with the research objectives of
this thesis. Chapter 3 contains the methods of the PET Data-Analysis Chain used
in this thesis, including details to evaluate and optimize preprocessing pipelines.
Chapters 4-7 cover the main results of this thesis (studies 1-4), presenting the
five scientific articles from the Appendices A-E. A thesis conclusion is found in
Chapter 8, including a perspective on future work.
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Chapter 2

Motivation and Background

2.1 Positron Emission Tomography

2.1.1 Principles of PET

Positron Emission Tomography (PET) is a quantitative nuclear imaging tech-
nique, in which the emission of positrons from the nucleus of a radioactive atom
is used to construct molecular images. When positrons interact with electrons,
they are annihilated, causing two 511 KeV photons to emit linearly in almost op-
posite direction (Figure 2.1). The line in which the photons are emitted is known
as a Line Of Response (LOR). The process of forming a LOR is fundamental in
nuclear medicine, where a radioactive isotope is either injected or inhaled into the
body. The isotope will distribute throughout the body by blood circulation, and
accumulate in specific tissue cells depending on the biochemical structure of the
radiotracer. Here the radioactive isotope will emit positrons as it decays. The
two emitted photons can be detected in coincidence using gamma ray detectors
and the signal can subsequently be converted into an electrical signal, amplified,
and reconstructed into a 3D image containing the spatial location of the decay.
The theory behind PET, including some of its limitations, can be summarized as
the following:

After the positron leaves the nucleus it will have an initial kinetic energy. How-
ever, due to elastic and inelastic interactions with surrounding matter, it will
eventually lose its kinetic energy making the distance travelled from the nucleus
finite. The finite distance travelled contributes to uncertainties from where the
radioactive decaying nucleus originated. This is rather essential as the main pur-
pose in PET is to estimate the location of the decaying nucleus and not the
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location of the annihilation. In addition, not all photon pairs are emitted strictly
at an angle of 180°. In water only 35% of the annihilations have zero momentum
and emit photons exactly at an angle of 180°. This combined with the positron
traveling distance before annihilation are some of the limitations affecting the
resolution of a PET scanner. For an isotope such as 11C the positron mean travel
range in water is approximately 1 mm [Bailey et al., 2005, p. 22].

Figure 2.1: Annihilation as a result of a positron being ejected from the nu-
cleus of a 18

9F atom. The annihilation occurs due to positron-electron merging,
thereby creating two photons to be sent off in almost linear opposite direction.

Attenuation of Radiation and Interaction with Matter
High-energy photons can interact with matter in three different ways; the pho-
toelectric effect, Compton scattering and pair production [Bailey et al., 2005].
The extent to which the photons interact with surrounding matter is predomi-
nantly determined by the energy of the photon, and the corresponding matters
ability to absorb energy. In the photoelectric effect the photon will collide with a
bound electron of an atom and transfer all of its energy to the electron. This will
subsequently result in the emission of an electron from the atom. In Compton
scattering the photon interacts with a loosely bound orbital electron of an atom
and will transfer only a part of its kinetic energy. The loosely bound electron
will subsequently be ejected from the atom, and the photon will be scattered in
a new direction with an angle related to its loss of energy. Compton scattering
occurs frequently within the human body at an energy interval of approximately
100 keV to 2 MeV. Pair production is the third option for photons to interact
with matter. Here a high-energy photon with kinetic energy higher than 1.022
MeV collides with a surrounding nucleus.
Several crystals can be used in PET imaging (e.g. NaI(T), BGO, LSO, LYSO,
GSO) to detect the photons and they are all characterized by having different
physical properties. Mainly four properties for crystals are essential for its proper
application in PET; stopping power for 511 keV photons, signal decay time, light
output, and intrinsic energy resolution [Bailey et al., 2005].
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